Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(7^{58}>7^{57}\Rightarrow7^{58}+2>7^{57}+2\Rightarrow E=\dfrac{7^{58}+2}{7^{57}+2}>1\)
\(7^{57}< 7^{58}\Rightarrow7^{57}+200< 7^{58}+200\Rightarrow F=\dfrac{7^{57}+200}{7^{58}+200}< 1\)
Vậy E > F
Ta có : ''Phần hơn'' của \(\frac{7^{58}+2}{7^{57}+2}\) là :
\(\frac{7^{58}+2}{^{ }7^{57}+2}\) \(-\) 1 = \(\frac{7^{57}.6}{7^{57}+2}\)
''Phần hơn'' của \(\frac{5^{57}+2017}{5^{56}+2017}\) với 1 là :
\(\frac{7^{57}+2017}{7^{56}+2017}\) \(-\) 1 = \(\frac{7^{56}.6}{7^{56}+2017}\)
Ta có :\(\frac{7^{56}.6}{7^{56}+2017}\) = \(\frac{7^{56}.7.6}{\left(7^{56}+2017\right)7}\) = \(\frac{7^{57}.6}{7^{57}+14119}\)
Ta thấy \(\frac{7^{57}.6}{7^{57}+2}\)> \(\frac{7^{57}.6}{7^{57}+14119}\)
Suy ra \(\frac{7^{57}.6}{7^{57}+2}\) > \(\frac{7^{56}.6}{7^{56}+2017}\)
Do đó \(\frac{7^{58}+2}{7^{57}+2}\) > \(\frac{7^{57}+2017}{7^{56}+2017}\)
ngoài ra a/b>1 thì a+m/b+m > 1 (m thuộc z, m khác 0) và a,b cậu biết rồi đó
e) \(\dfrac{\dfrac{1}{6}-\dfrac{1}{39}+\dfrac{1}{51}}{\dfrac{1}{8}-\dfrac{1}{12}+\dfrac{1}{68}}=\dfrac{\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{13}+\dfrac{1}{17}\right)}{\dfrac{1}{4}\left(\dfrac{1}{2}-\dfrac{1}{13}+\dfrac{1}{17}\right)}=\dfrac{1}{3}:\dfrac{1}{4}=\dfrac{3}{4}\)
\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)
\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)
mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)
nên E<F