\(D=\frac{3}{8^3}+\frac{7}{8^4}\)và \(C=\frac{3}{8^4}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

OK

\(D=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3.8}{8^4}+\frac{7}{8^4}=\frac{24+7}{8^4}=\frac{31}{8^4}\)

\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{56}{8^4}=\frac{59}{8^4}\)

Mà 59>31 => D<C

17 tháng 9 2019

\(D=\frac{3}{8^3}+\frac{7}{8^{\text{4}}}=\frac{3}{8^3}+\left(\frac{4}{8^4}+\frac{3}{8^4}\right)\\ \)

\(C=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

vì \(\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}>\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\\ =>D>C\)

27 tháng 11 2016

b/ Ta có 

\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)

\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

c/ Đặt \(10^7=a\)thì ta có

\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)

Giả sử A>B thì ta có

\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)

\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)

\(\Leftrightarrow617a+313>0\)(đúng)

Vậy A>B

c/ Đặt \(10^{1991}=a\)thì ta có

\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)

Giả sử A>B thì ta có

\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)

\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)

\(\Leftrightarrow-81a>0\)(sai)

Vậy A < B

a/ Thì quy đồng là ra nhé

27 tháng 11 2016

a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh

19 tháng 4 2016

A=17/4096

B=-53/4096

vayA>B vi so am luon be hon so duong

23 tháng 1 2017

Kết quả là A>B bạn nhé

16 tháng 8 2015

ta co :  A = 3/8^3+3/8^4+4/8^4

           B=3/8^3+3/8^4+4/8^3

VI 4/8^4 <4/8^3 NEN A<B

16 tháng 8 2015

có \(\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

    \(\frac{7}{8^3}+\frac{3}{8^4}=\frac{3}{8^3}+\frac{4}{8^3}+\frac{3}{8^4}\)

vì \(\frac{4}{8^4}<\frac{4}{8^3}\) nên \(\frac{3}{8^3}+\frac{7}{8^4}<\frac{7}{8^3}+\frac{3}{8^4}\)

 

16 tháng 4 2017

A. \(\frac{3}{4}\) x \(\frac{8}{9}\)\(\frac{15}{16}\)x .... x \(\frac{899}{900}\)

\(\frac{1.3}{2^2}\) x \(\frac{2.4}{3^3}\)\(\frac{3.5}{4^2}\)x ... x \(\frac{29.31}{30^2}\)

\(\left(\frac{1.2.3...29}{2.3.4...30}\right).\left(\frac{3.4.5...31}{2.3.4...30}\right)\)

\(\frac{1}{30}.\frac{31}{2}\)\(\frac{31}{60}\)

B. 

\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{8}{24}+\frac{9}{24}-\frac{14}{24}=\frac{8+9-14}{24}=\frac{3}{24}=\frac{1}{8}\)

18 tháng 5 2021

\(a.\)

\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)

\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)

\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)

\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)

\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)

\(10A=1+\frac{9}{10^{16}+1}\)

\(B=\frac{10^{16}+1}{10^{17}+1}\)

\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)

\(10B=\frac{10^{17}+10}{10^{17}+1}\)

\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)

\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)

\(10B=1+\frac{9}{10^{17}+1}\)

\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)

19 tháng 5 2021

xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)

\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)

\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)

Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B

a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)

\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)

\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)

b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)

c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)