Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)
\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)
Vì \(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)
\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)
Vậy...
Ta xét hiệu:
\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)
\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)
Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)
=> A-1<B-1
=>A<B
Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng
Và 1/2 = 10/20
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2
Vậy S > 1/2
Câu 1:
a) \(\dfrac{-15}{17}\) và \(\dfrac{-19}{21}\)
Ta có: \(\dfrac{-15}{17}=-1+\dfrac{2}{17}\); \(\dfrac{-19}{21}=-1+\dfrac{2}{21}\)
Vì \(\dfrac{2}{17}>\dfrac{2}{21}\)
Do đó: \(\dfrac{-15}{17}>\dfrac{19}{-23}\)
b) \(\dfrac{-13}{19}\) và \(\dfrac{19}{-23}\)
Ta có: \(\dfrac{19}{23}>\dfrac{19}{25}\); \(\dfrac{13}{19}=1-\dfrac{6}{19}\); \(\dfrac{19}{25}=1-\dfrac{6}{25}\)
mà \(\dfrac{6}{19}>\dfrac{6}{25}\) \(\Rightarrow\dfrac{13}{19}< \dfrac{19}{25}< \dfrac{19}{23}\)
Vì \(\dfrac{13}{19}< \dfrac{19}{23}\Rightarrow\dfrac{-13}{19}>\dfrac{19}{-23}\)
c) \(\dfrac{-24}{35}\) và \(\dfrac{-19}{30}\)
Ta có: \(\dfrac{-24}{35}=-1+\dfrac{19}{35}\);\(\dfrac{-19}{30}=-1+\dfrac{11}{30}\)
Vì \(\dfrac{11}{35}< \dfrac{11}{30}\)
Do đó: \(\dfrac{-24}{35}< \dfrac{-19}{30}\)
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\); \(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931}\)
Sorry câu d mình viết ngược:
Làm lại:
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931};\)
\(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
F=(9.75.21\(\dfrac{3}{7}\)+\(\dfrac{39}{4}\).18\(\dfrac{4}{7}\)).\(\dfrac{15}{78}\)
=(\(\dfrac{39}{4}\).21\(\dfrac{3}{7}\)+\(\dfrac{39}{4}\).18\(\dfrac{4}{7}\)).\(\dfrac{15}{78}\)
=[\(\dfrac{39}{4}\).(21\(\dfrac{3}{7}\)+18\(\dfrac{4}{7}\))].\(\dfrac{15}{78}\)
=[\(\dfrac{39}{4}\).(21+18)+(\(\dfrac{3}{7}\)+\(\dfrac{4}{7}\))].\(\dfrac{15}{78}\)
=[\(\dfrac{39}{4}\).(39+1)].\(\dfrac{15}{78}\)
=(\(\dfrac{39}{4}\).40).\(\dfrac{15}{78}\)
=390.\(\dfrac{15}{78}\)=75
\(B=71\dfrac{38}{45}-\left(43\dfrac{8}{45}-1\dfrac{17}{57}\right)\)
\(B=71\dfrac{38}{45}-43\dfrac{8}{45}-1\dfrac{17}{57}\)
\(B=28\dfrac{2}{3}-1\dfrac{17}{57}=27\dfrac{11}{57}\)
\(D=\left(19\dfrac{5}{8}:\dfrac{7}{12}-13\dfrac{1}{4}:\dfrac{7}{12}\right).\dfrac{4}{5}\)
\(D=\dfrac{12}{7}.\left(19\dfrac{5}{8}-13\dfrac{1}{4}\right).\dfrac{4}{5}\)
\(D=\dfrac{12}{7}.\dfrac{51}{8}.\dfrac{4}{5}=\dfrac{306}{35}\)
Câu còn lại làm tương tự!
Chúc bạn học tốt!!!
Bài này có rất nhiều cách lm nhé!
Ta có : A = \(\dfrac{17^{18}+1}{17^{19}+1}\) => 17A = \(\dfrac{17^{19}+17}{17^{19}+1}\) = \(1+\dfrac{16}{17^{19}+1}\)
B = \(\dfrac{17^{17}+1}{17^{18}+1}\) => 17B = \(\dfrac{17^{18}+17}{17^{18}+1}\) = \(1+\dfrac{16}{17^{18}+1}\)
Vì \(\dfrac{16}{17^{19}+1}\) < \(\dfrac{16}{17^{18}+1}\) ( vì 1719 +1 > 1716+1 )
=> \(1+\dfrac{16}{17^{19}+1}\) < \(1+\dfrac{16}{17^{18}+1}\)
=> 17A < 17B
=> A < B ( vì 17 > 0)
Ta có :
\(A=\dfrac{17^{18}+1}{17^{19}+1}\)
17A= \(17\times\dfrac{17^{18}+1}{17^{19}+1}\)
\(17A=\dfrac{17^{19}+17}{17^{19}+1}\)
\(17A=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}\)
\(17A=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}\)
\(17A=1+\dfrac{16}{17^{19}+1}\)
Lại có :
\(B=\dfrac{17^{17}+1}{17^{18}+1}\)
\(17B=17\times\dfrac{17^{17}+1}{17^{18}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}\)
\(17B=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}\)
\(17B=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}\)
\(17B=1+\dfrac{16}{17^{18}+1}\)
Mà : \(\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)
\(\Rightarrow1+\dfrac{16}{17^{19}+1}< 1+\dfrac{16}{17^{18}+1}\)
⇒ A < B
Vậy A < B
Ta có: \(\dfrac{1}{11}>\dfrac{1}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
\(\dfrac{1}{13}>\dfrac{1}{20}\)
\(\dfrac{1}{14}>\dfrac{1}{20}\)
\(\dfrac{1}{15}>\dfrac{1}{20}\)
\(\dfrac{1}{16}>\dfrac{1}{20}\)
\(\dfrac{1}{17}>\dfrac{1}{20}\)
\(\dfrac{1}{18}>\dfrac{1}{20}\)
\(\dfrac{1}{19}>\dfrac{1}{20}\)
\(\dfrac{1}{20}=\dfrac{1}{20}\)
=> \(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}.10\)
hay S > \(\dfrac{1}{2}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 11 < 20 )
\(\dfrac{1}{12}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 12 < 20 )
...
\(\dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\)( 10 số hạng )
\(\Rightarrow S>\dfrac{1}{20}.10\Rightarrow S>\dfrac{10}{20}\Rightarrow S>\dfrac{1}{2}\)
Vậy ...
a) 7/15-(2/15-12/18)
=7/15-2/15+2/3
=5/15+2/3
=1/3+2/3
=1
b)(7/41- 4/9) - (3/19 + 7/41) + (4/9 - 16/19)
=7/41 - 4/9 - 3/19 - 7/41 + 4/9 + 16/19
=(7/41 - 7/41) - (4/9 - 4/9) - (3/19 + 16/19)
= -1
b) 7/41 - 4/9 - 3/19 - 7/41 + 4/9 + 16/19
= (7/41 - 7/41 ) - (4/9 - 4/9 ) + ( 3/19 + 16/19 )
= 0 - 0 + 1
= 1
a) Ta có: \(\dfrac{19}{33}=\dfrac{38}{66};\dfrac{6}{12}=\dfrac{1}{2}=\dfrac{33}{66};\dfrac{13}{22}=\dfrac{39}{66}\)
Mà \(\dfrac{33}{66}< \dfrac{38}{66}< \dfrac{39}{66}\Rightarrow\dfrac{6}{12}< \dfrac{19}{33}< \dfrac{13}{22}\)
Vậy các số hữu tỉ được sắp xếp theo thứ tự tăng dần là: \(\dfrac{6}{12};\dfrac{19}{33};\dfrac{13}{22}\)
b) Ta có:
\(\dfrac{-18}{12}=\dfrac{-3}{2}=\dfrac{-105}{70};\dfrac{-10}{7}=\dfrac{-100}{70};\dfrac{-8}{5}=\dfrac{-112}{70}\)
Mà \(\dfrac{-112}{70}< \dfrac{-105}{70}< \dfrac{-100}{70}\Rightarrow\dfrac{-8}{5}< \dfrac{-18}{12}< \dfrac{-10}{7}\)
Vậy các số hữu tỉ được sắp xếp theo thứ tự tăng dần là: \(\dfrac{-8}{5};\dfrac{-18}{12};\dfrac{-10}{7}\)
a. \(\dfrac{19}{33};\dfrac{6}{12};\dfrac{13}{22}\) ( \(MC=132\) )
Quy đồng : \(\dfrac{19}{33}=\dfrac{76}{132}\) ; \(\dfrac{6}{12}=\dfrac{66}{132}\) ; \(\dfrac{13}{22}=\dfrac{78}{132}\)
Vì \(\dfrac{66}{132}< \dfrac{76}{132}< \dfrac{78}{132}\) => \(\dfrac{6}{12}< \dfrac{19}{33}< \dfrac{13}{22}\)
b. \(\dfrac{-18}{12};\dfrac{-10}{7};\dfrac{-8}{5}\) ( \(MC=420\) )
Quy đồng : \(\dfrac{-18}{12}=\dfrac{-630}{420}\) ; \(\dfrac{-10}{7}=\dfrac{-600}{420}\) ; \(\dfrac{-8}{5}=\dfrac{-672}{420}\)
Vì : \(\dfrac{-672}{420}< \dfrac{-630}{420}< \dfrac{-600}{420}\) => \(\dfrac{-8}{5}< \dfrac{-18}{12}< \dfrac{-10}{7}\)
quy đồng
lấy 36 làm mẫu số chung
-13 / 12 = -39/36
-19/18 = -38/36
mà đối với số dương số nào lớn hơn thì số đó bé hơn
vậy -39/36 <-38/36
=> -13 / 12 < -19/18 = -38/36
Giải:
\(\dfrac{-13}{12}=-1+\dfrac{-1}{12}\)
\(\dfrac{-19}{18}=-1+\dfrac{-1}{18}\)
Vì \(\dfrac{-1}{12}< \dfrac{-1}{18}\) nên \(\dfrac{-13}{12}< \dfrac{-19}{18}\)
Chúc bạn học tốt!