Tam giác đồng dạng có hai tính chất quan trọng sau đây:
Ba cặp cạnh tỉ lệ với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
Trường hợp | Giống nhau | Khác nhau | |
---|---|---|---|
Bằng nhau | Đồng dạng | ||
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh |
So sánh:
Trường hợp | Giống nhau | Khác nhau | |
---|---|---|---|
Bằng nhau | Đồng dạng | ||
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh |
hai tam giác ABC và DEF có góc A bằng góc D góc B bằng góc E AB=8cm CD=10cm DE=6cm tính độ dài các cạnh AC,DE,EF biết rằng AC dàu hơn CF là 3cm
*So sánh :
Trường hợp | Giống nhau | Khác | nhau |
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau , không cần có điều kiện cạnh |
Trả lời:
So sánh:
Trường hợp | Giống nhau | Khác nhau | |
---|---|---|---|
Bằng nhau | Đồng dạng | ||
1 | 3 cạnh | 3 cạnh tương ứng bằng nhau | 3 cạnh tương ứng tỉ lệ |
2 | 2 cạnh 1 góc | 2 cạnh tương ứng và một góc kề với hai cạnh bằng nhau | 2 cạnh tương ứng tỉ lệ |
3 | 2 góc bằng nhau | 1 cạnh và 2 góc kề tương ứng bằng nhau | Chỉ 2 góc bằng nhau, không cần có điều kiện cạnh |
- Có
- Các trường hợp là :
đồng dạng (c.c.c) , đồng dạng (g.g) , đông dạng (c.g.c)
đồng dạng (c.c.c) , đồng dạng (g.g) , đồng dạng (c.g.c)
a) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:
\(\widehat B = \widehat N\) (giả thuyết)
\(\widehat A = \widehat M = 90^\circ \).
Do đó, \(\Delta ABC\backsim\Delta MNP\) (g.g)
b) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:
\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) (giả thuyết)
\(\widehat A = \widehat M = 90^\circ \).
Do đó, \(\Delta ABC\backsim\Delta MNP\) (c.g.c).
1. Các trường hợp bằng nhau của tam giác
a) Trường hợp 1 : cạnh – cạnh – cạnh
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng
nhau.
b) Trường hợp 2 : cạnh – góc – cạnh
Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam
giác kia thì hai tam giác đó bằng nhau.
c) Trường hợp 3 : góc – cạnh – góc
Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam
giác kia thì hai tam giác đó bằng nhau.
3. Các trường hợp bằng nhau của tam giác vuông
a) Trường hợp 1 : hai cạnh góc vuông (cạnh – góc - cạnh)
Nếu hai cạnh góc vuông của tam giác vuông này bằng hai cạnh góc vuông của tam giác
vuông kia thì hai tam giác vuông đó bằng nhau.
b) Trường hợp 2 : cạnh huyền – góc nhọn (góc – cạnh – góc)
Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc
nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
c) Trường hợp 3 : cạnh huyền – cạnh góc vuông (cạnh – cạnh – cạnh)
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và
một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Trường hợp
Giống nhau
Khác nhau
Bằng nhau
Đồng dạng
1
3 cạnh
3 cạnh tương ứng bằng nhau
3 cạnh tương ứng tỉ lệ
2
2 cạnh một góc
Cạnh cạnh tương ứng và một góc kề với hai cạnh bằng nhau
2 cạnh tương ứng tỉ lệ
3
1 cạnh và hai góc kề tương ứng bằng nhau
2 góc tương ứng bằng nhau