Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(199^{20}=\left(199^4\right)^5\)
= \(2003^{15}=\left(2003^3\right)^5\)
Vậy \(\left(2003^3\right)^5>\)
b) /rightnarrow/
\(a.199^{20}< 200^{20}=200^{15}.200^5\)
\(2003^{15}>2000^{15}=200^{15}.10^{15}=200^{15}.\left(10^3\right)^5=200^{15}.1000^5\)
\(Vì200^{15}.200^5< 200^{15}.1000^5\)
\(=>199^{20}< 2003^{15}\)
\(b.3^{99}=\left(3^3\right)^{33}=27^{33}\)
\(Vì27^{33}>11^{21}\)
\(=>3^{99}>11^{21}\)
Ủng hộ mk nha ^_-
a) b) c)
523=5.522 216=213.23=213.8 275.498=(33)5.(72)8=38.710
5.522<6.522 => 523<6.522 213.8>7.213 =>7.213<216 2115=(3.7)15=315.715 mà 315.715>38.710 nên 275.498> 2115
Tìm x biết \(\left(x-5\right)^4=\left(x-5\right)^6\)
So Sánh: 2711và 818; 19920 và 200315; 399và 1121
So sánh :
a ) 31^11 và 17^14
31^11 < 32^11= (25)11 = 2^55
=> 31^11 < 2^55
17^14>16^14=(24)14 = 2^56
=>17^14>2^56
=>31^11 < 2^55 < 2^56 < 17^14
=>31^11 < 17^14
b ) 3^500 và 7^300
3^500 = ( 35)100 = 243100
7^300 = ( 73)100 = 343100
=> 243100 < 343100
=> 3^500 < 7^300
Tìm x :
a ) 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b ) 2x . 22 = ( 23)2 = 64
=> 2x = 64 : 22 = 16
=> 2x = 24
=> x = 4
Bài cuối bạn tham khảo tại : Câu hỏi của Linh Phan - Toán lớp 6 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/198524999512.html
a: 199^20=1568239201^5
2003^15=8036054027^5
=>199^20<2003^15
b: 3^99=27^33>27^21=11^21
Lời giải:
a.
$199^{20}<200^{20}=(2.100)^{20}=2^{20}.10^{40}=(2^{10})^2.10^{40}< (10^4)^2.10^{40}=10^8.10^{40}=10^{48}$
$2003^{15}> 2000^{15}=(2.10^3)^{15}=2^{15}.10^{45}> 2^{10}.10^{45}> 10^3.10^{45}=10^{48}$
$\Rightarrow 199^{20}< 2003^{15}$
b.
$3^{99}=(3^9)^{11}=19683^{11}$
$11^{21}< 11^{22}=(11^2)^{11}=121^{11}$
Hiển nhiên $19683^{11}> 121^{11}$
$\Rightarrow 3^{99}> 121^{11}> 11^{21}$