Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)16^{19}=\left(8\times2\right)^{19}=8^{19}\times2^{19}>8^{19}>8^{15}\)
\(\Rightarrow16^{19}>8^{15}\)
\(b)81^8=\left(3^4\right)^8=3^{24}< 3^{33}=\left(3^3\right)^{11}=27^{11}\)
\(\Rightarrow27^{11}>81^8\)
\(c)625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow125^7>625^5\)
\(d)244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>3^{52}=\left(3^4\right)^{13}=81^{13}>80^{13}\)
\(\Rightarrow244^{11}>80^{13}\)
\(d)31^{17}>17^{17}>17^{14}\)
\(\Rightarrow31^{17}>17^{14}\)
a) \(16^{12}=4^{2\cdot12}=4^{24}\)
\(64^8=4^{4\cdot8}=4^{32}\)
=>\(64^8>16^{12}\)
a ) 27 11 và 81 8
Ta có :
27 11 = ( 3 3 ) 11 = 3 33
81 8 = ( 3 4 ) 8 = 3 32
Vì 3 33 > 3 32
=> 27 11 > 81 8
b ) 625 5 và 125 7
Ta có :
625 5 = ( 5 4 ) 5 = 5 20
125 7 = ( 5 3 ) 7 = 5 21
Ví 5 20 < 5 21
=> 625 5 < 125 7
c ) 5 36 và 11 24
Ta có
5 36 = ( 5 6 ) 6 = 15625 6
11 24 = ( 11 4 ) 6 = 14641 6
Vì 15625 6 < 14641 6
=> 5 36 > 1124
d ) 3 2n và 2 3n
Ta có :
3 2n = ( 3 2 ) n = 9 n
2 3n = ( 2 3 ) n = 8 n
Vì 9 n > 8 n
=> 3 2n > 2 3n
a,\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9100>8100 nên 3200>2300
b,\(3^{375}=3^{5.75}=\left(3^5\right)^{75}=243^{75}\)
\(5^{225}=5^{3.75}=\left(5^3\right)^{75}=125^{75}\)
Vì 24375>12575 nên 3375>5225
c,\(99^{20}=99^{2.10}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Vật 9920<999910
d,\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì 81927>31257 nên 291>535
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
Ta có : 31^2 = 961 < 1000 và 2^10 = 1024 > 1000.Vậy :
31^2 < 2^10
---> 31^4 < 2^20 = (2^4)^5 = 16^5 < 17^5
---> 31^12 < 17^15 = 17.17^14
---> 31^11 < (17/31).17^14 < 17^14
Vậy 31^11 < 17^14.
chúc bn hok tốt @_@
a. Ta có : 27 ^11 = (3^3)^11= 3^33
81^8=(3^4)^8 = 3 ^32
=> 27^11>81^8
b. 625^5= (5^4)^5=5^20
125^7=(5^3)^7=5^21
=> 125^7>625^5
c. 5^36= (5^3)^12 =125^12
11^24=(11^2)^12= 121^12
=> 5^36>11^24
d. 3^2n = 9^n
2^3n= 8^n
=> 3^2n>2^3n
\(a,27^{11}\)và \(81^8\)
Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
\(b,625^5\)và \(125^7\)
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
\(3^{200}>2^{300}\) \(27^5< 243^3\)
\(9^{70}>8^{100}\) \(31^{11}>17^{14}\)
nhớ phải kết bn hoặc đấy
a) Ta có: 3^200=3^2.100=9^100
2^300=2^3.100=8^100
Vì 9^100>8^100 nên 3^200>2^300