Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x=\(\frac{30-2\sqrt{45}}{4}< \frac{30-2\sqrt{49}}{4}\)
\(\Leftrightarrow x=\frac{30-2\sqrt{45}}{4}< \frac{30-14}{4}< 4\)
Ta có x<4 (1)
lại có y=\(\sqrt{17}>\sqrt{16}\Rightarrow\sqrt{17}>4\)
=> y>4 (2)
từ (1) và (2) =>x<y
Ta có : x = \(\frac{30-2\sqrt{45}}{4}\)= \(\frac{15-\sqrt{45}}{2}\)> 0
y = \(\sqrt{17}>0\)
\(\Rightarrow\)\(x^2\)= \(\frac{\left(15-\sqrt{45}\right)^2}{4}\)= \(\frac{225-30\sqrt{45}+45}{4}\)= \(\frac{270-30\sqrt{45}}{4}\)
\(y^2\)= 17
Xét hiệu : \(x^2-y^2\)= \(\frac{270-30\sqrt{45}}{4}\)\(-\)17 = \(\frac{202-30\sqrt{45}}{4}\)= \(\frac{\sqrt{40804}-\sqrt{40500}}{4}>0\)
( vì 40804\(>\)40500 \(\ge\)0 )
\(\Rightarrow\)\(x^2>y^2\)\(\Rightarrow\)\(x>y\) ( vì \(x,y>0\))
\(a\)
\(\sqrt{7}+\sqrt{15}\)
\(=\sqrt{7+15}\)
\(=4,69\)
\(4,69< 7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(b\)
\(\sqrt{7}+\sqrt{15}+1\)
\(=\sqrt{7+15}+1\)
\(=4,69+1\)
\(=5,69\)
\(\sqrt{45}\)
\(=6,7\)
\(5,69< 6,7\)
\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)
\(c\)
\(\frac{23-2\sqrt{19}}{3}\)
\(=\frac{22.4,53}{3}\)
\(=\frac{95,7}{3}\)
\(=31,9\)
\(\sqrt{27}\)
\(=5,19\)
\(31,9>5,19\)
\(\text{}\Rightarrow\text{}\text{}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)
\(d\)
\(\sqrt{3\sqrt{2}}\)
\(=\sqrt{3.1,41}\)
\(=\sqrt{4,23}\)
\(=2,05\)
\(\sqrt{2\sqrt{3}}\)
\(=\sqrt{2.1,73}\)
\(=\sqrt{3,46}\)
\(=1,86\)
\(2,05>1,86\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
\(Học \) \(Tốt !!!\)
a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)
Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)
b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)
Lại có : \(\sqrt{45}< \sqrt{49}< 7\)
Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)
\(\Rightarrow2\sqrt{19}>2.4=8\)
\(\Rightarrow-2\sqrt{19}< -8\)
\(\Rightarrow23-2\sqrt{19}< 23-8=15\)
\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)
Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)
d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)
\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
\(\frac{23-2\sqrt{9}}{3}=\frac{23\sqrt{29.4}}{3}=\frac{23\sqrt{116}}{3}< \frac{23\sqrt{144}}{3}=\frac{23.12}{3}=92< 100=\sqrt{10}\)
Mà \(\sqrt{10}< \sqrt{27}\)nên \(\frac{23-2\sqrt{9}}{3}< \sqrt{27}\)
Vậy,...
B=\(\sqrt{17}+\sqrt{5}+1\)>\(\sqrt{16}+\sqrt{4}+1\)=4+2+1=7=\(\sqrt{49}\)>\(\sqrt{45}\)
Vậy B>C
a)Ta có: \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)
Vì \(\sqrt{20}< \sqrt{50}\)
Nên \(2\sqrt{5}< 5\sqrt{2}\)
b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)
Vì \(\sqrt{117}< \sqrt{176}\)
Nên \(3\sqrt{13}< 4\sqrt{11}\)
c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)
\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)
Vì \(\sqrt{\frac{63}{16}}>1\)
\(\sqrt{\frac{4}{5}}< 1\)
Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)
Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)
Giả sử
\(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)
\(\Leftrightarrow15>2\sqrt{17}+\sqrt{45}\)
\(\Leftrightarrow225>113+4\sqrt{765}\)
\(\Leftrightarrow28>\sqrt{765}\)
\(\Leftrightarrow784>765\) (đúng)
Vậy \(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)
Giả sử:
\(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)
\(\Leftrightarrow15>2\sqrt{17}+\sqrt{45}\)
\(\Leftrightarrow225>113+4\sqrt{765}\)
\(\Leftrightarrow28>\sqrt{765}\)
\(\Leftrightarrow784>765\)(đúng)
Vậy \(\frac{30-2\sqrt{45}}{4}>\sqrt{17}\)