K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

Bài làm:

Ta có: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

Áp dụng Bất đẳng thức Cauchy (AM-GM), ta được:

\(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{b}{c}.\frac{c}{b}}+2\sqrt{\frac{a}{b}.\frac{b}{a}}\)

\(=2.\sqrt{1}+2.\sqrt{1}+2.\sqrt{1}\)\(=2+2+2\)\(=6\)

=> \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{c}{a}=\frac{a}{c}\\\frac{b}{c}=\frac{c}{b}\end{cases}\Rightarrow a=b=c=1}\)

Vậy \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=6\)khi \(a=b=c=1\)

Học tốt!!!!

7 tháng 6 2020

Theo giả thiết : \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=6\)

\(< =>\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}=6\)

\(< =>\frac{ac+bc}{c^2}+\frac{ba+ca}{a^2}+\frac{cb+ba}{b^2}=6\)

Ta có : \(VT=\frac{ac+bc}{c^2}+\frac{ba+ca}{a^2}+\frac{cb+ba}{b^2}\)

\(=\frac{ac}{c^2}+\frac{bc}{c^2}+\frac{ba}{a^2}+\frac{ca}{a^2}+\frac{cb}{b^2}+\frac{ba}{b^2}\)

\(\ge6\sqrt[6]{\frac{a^2c^2b^2c^2b^2a^2}{a^4b^4c^4}}=6\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Xin chém cách khác ạ =))

11 tháng 2 2016

Đây là điều đương nhiên ko cần phải chứng minh
 

5 tháng 4 2015

Ta có (a+b+c)(1/a+1/b+1/c) = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b

                                         = 3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) (1)

Vì a, b, c > 0 nên ta có (Áp dụng Côsi)

a/b + b/a \(\ge\) 2 (2)

a/c + c/a \(\ge\) 2 (3)

b/c + c/b \(\ge\) 2 (4)

Từ (1), (2), (3) và (4) suy ra

(a+b+c)(1/a+1/b+1/c) \(\ge\) 9

Dấu "=" xảy ra <=> a = b = c

2 tháng 12 2014

(a2+b2+c2)2>2(a4+b4+c4)

<=> a+ b+ c4+ 2a2b+ 2a2c+ 2b2c> 2(a+ b+ c4)

<=> a+ b+ c- 2a2b2 - 2a2c- 2b2c< 0

<=> (a2 b2  - c2)- 4b2c<0

<=>  (ab - c2) <4b2c2

<=> ab - c2<4b2c2

<=>  a< (b+c)2

<=> a < b+c   ( a,b,c >0)

CMTT với b và c ta có

b < a  + c

c< b + a

>>> ĐPCM

30 tháng 11 2014

bạn oi tra loi gium cau hoi tren minh voi câu hình thang kìa đi ma năn nỉ đó mà

4 tháng 3 2017

a=1+1+1+1+1+1=6

4 tháng 3 2017

6 nha bạn

20 tháng 5 2018

\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)

Áp dụng \(\left(x+y\right)^2\ge4xy\)

18 tháng 5 2018

1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc