\(\dfrac{-11}{-32}\) và \(\dfrac{\t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2024

a; \(\dfrac{6}{x}\) < \(\dfrac{x}{7}\) < \(\dfrac{8}{x}\)

    vì \(x\) \(\in\) N* ta có: 6.7 < \(x.x\) < 7.8

                             42 < \(x^2\) < 56

                            \(x^2\) = 49 

                           \(x\) = \(\pm\) 7

Vì \(x\) \(\in\) N*; \(x\) = 7

20 tháng 1 2024

b;  \(\dfrac{x}{11}\) < \(\dfrac{12}{x}\) < \(\dfrac{x}{9}\)

   9.12<   \(x^2\) < 11.12 

    108 < \(x^2\) < 132

            \(x^2\) = 121

            \(\left[{}\begin{matrix}x=-11\\x=11\end{matrix}\right.\)

    Vì \(x\in\) N*

   \(x\)  = 11

3 tháng 4 2017

\(\left|x-\dfrac{2}{5}\right|-\dfrac{1}{2}=\dfrac{1}{3}.\dfrac{1}{4}-\dfrac{1}{5}\)

\(\Rightarrow\left|x-\dfrac{2}{5}\right|-\dfrac{1}{2}=\dfrac{-7}{60}\)

\(\Rightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{23}{60}\)

\(\Rightarrow x-\dfrac{2}{5}=\dfrac{23}{60}\) hoặc \(x-\dfrac{2}{5}=\dfrac{-23}{60}\)

\(\Rightarrow x=\dfrac{47}{60}\) hoặc \(x=\dfrac{1}{60}\)

Vậy \(x\in\left\{\dfrac{47}{60};\dfrac{1}{60}\right\}\)

11 tháng 10 2021

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> n+3n+4n+3n+4là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> 3n+39n+83n+39n+8phân số tối giản

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> n+3n+4n+3n+4là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> 3n+39n+83n+39n+8phân số tối giản

Tl

8 phân số tối giản

Hok tốt

15 tháng 7 2017

1) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\)

\(\Leftrightarrow2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\)

\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\)

\(\Leftrightarrow\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{7}{8}+\dfrac{1}{3}\\\dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{13}{24}\\\dfrac{1}{2}x=\dfrac{29}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\left(-\dfrac{13}{24}\right):\dfrac{1}{2}\\x=\dfrac{29}{24}:\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{12}\\x=\dfrac{29}{12}\end{matrix}\right.\)

15 tháng 7 2017

2) \(\dfrac{3}{4}-2\left|2x-\dfrac{2}{3}\right|=2\)

\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2\)

\(\Leftrightarrow2\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}\)

\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{8}:2\)

\(\Leftrightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{-5}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{-5}{16}\\2x-\dfrac{2}{3}=\dfrac{5}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-5}{16}+\dfrac{2}{3}\\2x=\dfrac{5}{16}+\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{17}{48}\\2x=\dfrac{47}{48}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{48}:2\\x=\dfrac{47}{48}:2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{96}\\x=\dfrac{47}{96}\end{matrix}\right.\)

8 tháng 1 2021

a) \(1=\dfrac{6}{6}\)

b) \(0=\dfrac{0}{5}\)

3 tháng 4 2017

4) | x-1/3| -1/3=1/3

25 tháng 3 2017

Ta có:

\(A=\dfrac{3n+2}{n-1}=\dfrac{\left(3n-3\right)+5}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{5}{n-1}=\dfrac{3\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=3+\dfrac{5}{n-1}\)

Để \(A\in Z\Rightarrow\dfrac{5}{n-1}\in Z\Rightarrow5⋮n-1\) hay \(n-1\in U\left(5\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(n-1\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(2\) \(0\) \(6\) \(-4\)

Vậy với \(n\in\left\{-4;0;2;6\right\}\) thì \(\dfrac{3n+2}{n-1}\in Z\)

25 tháng 3 2017

Để \(A\in Z\) thì \(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5\) \(⋮n-1\)

\(3\left(n-1\right)⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

\(n-1\) 1 \(-1\) 5 \(-5\)
\(n\) 2 0 6 \(-4\)
Kết luận nhận nhận nhận nhận

Vậy \(n\in\left\{-4;0;2;6\right\}\).

a: 17/200>17/314

b: 11/54=22/108<22/37

c: 141/893=3/19

159/901=3/17

mà 3/19<3/17

nên 141/893<159/901