Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Leftrightarrow\frac{1}{2}M=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{6}-\frac{1}{11}=\frac{5}{66}\)
\(\Rightarrow M=\frac{5}{66}:\frac{1}{2}=\frac{5}{33}.\)
\(M=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
\(M=\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}\)
\(M=\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+\frac{2}{8\cdot9}+\frac{2}{9\cdot10}+\frac{2}{10\cdot11}\)
\(M=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\right)\)
\(M=2\left(\frac{1}{6}-\frac{1}{11}\right)\)
\(M=2\cdot\frac{5}{66}\)
\(M=\frac{5}{33}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)
ta có
\(1-\frac{2018}{2019}=\frac{1}{2019}\)và\(1-\frac{2019}{2020}=\frac{1}{2020}\)
vì\(\frac{1}{2019}>\frac{1}{2020}\)vậy\(\frac{2018}{2019}>\frac{2019}{2020}\)
a) Ta có \(\frac{13}{7}=2-\frac{1}{7}\)
\(\frac{21}{12}=2-\frac{1}{4}\)
Vì \(\frac{1}{7}< \frac{1}{4}\)\(\Rightarrow2-\frac{1}{7}>2-\frac{1}{4}\)\(\Rightarrow\frac{13}{7}>\frac{21}{12}\)
Vậy \(\frac{13}{7}>\frac{21}{12}\)
b) Ta có : \(\frac{2018}{2019}=1-\frac{1}{2019}\)
\(\frac{2019}{2020}=1-\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow1-\frac{1}{2019}< 1-\frac{1}{2020}\Rightarrow\frac{2018}{2019}< \frac{2019}{2020}\)
Vậy \(\frac{2018}{2019}< \frac{2019}{2020}\)
c) Ta có :Vì \(\frac{17}{53}< \frac{17}{50}< \frac{19}{50}\) \(\Rightarrow\frac{17}{53}< \frac{19}{50}\)
Vậy \(\frac{17}{53}< \frac{19}{50}\)
a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
=> A < B
a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018
B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019
vì 1/2017*2018>1/2018*2019=> A<B
b)
a) \(\frac{5}{6}\)= \(\frac{15}{18}\); b) \(\frac{99}{100}\)< \(\frac{100}{99}\); c ) \(\frac{15}{17}\)> \(\frac{13}{18}\)vì \(\frac{15}{17}\)> \(\frac{15}{18}\)> \(\frac{13}{18}\);
d) \(\frac{222}{333}\)= \(\frac{2}{3}\)\(=1-\frac{1}{3}\); \(\frac{3333}{4444}\)= \(\frac{3}{4}\)= \(1-\frac{1}{4}\); vì \(\frac{1}{3}\)> \(\frac{1}{4}\)nên \(\frac{222}{333}\)< \(\frac{3333}{4444}\)
e) \(\frac{292929}{272727}\)= \(\frac{29}{27}\)= \(1+\frac{2}{17}\); \(\frac{347347}{345345}\)= \(\frac{347}{345}\)= \(1+\frac{2}{345}\)nên \(\frac{292929}{272727}\)> \(\frac{347347}{345345}\)
Bài làm
c ) Ta có :
\(\frac{2017}{2018}< 1\)
\(\frac{12}{11}>1\)
\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)
trả lời
a, quy đồng rồi so sánh
b,quy đồng rồi so sánh
c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn
d,quy đồng rồi so sánh
chắc vậy chúc bn học tốt