![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì tam giác ABC cân tại A
=> AB=AC(t/c tam giác cân)(1)
=> ^B=^C(t/c tam giác cân)
mà ^B=45o
=>^C=45o
Ta có : Xét ∆ABC :^A+^B+^C=180o
Thay số : ^B=45o;^C=45o
=> ^A+45o+45o=180o
=> ^A=90o
Xét ∆ABC:^A=90o
=>BC >AB ( cạnh huyền là cạnh lớn nhất)(2)
Từ (1) và (2)
=>BC>AB=AC
b) Ta có : ∆ABC cân tại A ; ^B=45o
=> ∆ABC vuông cân tại A
Hay ∆ABC là ∆vuông cân
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)
`@` Theo định lý quan hệ giữa góc và cạnh đối diện
`->`\(\text{BC > AC = AB}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\Rightarrow80+45+\widehat{C}=180\Rightarrow125+\widehat{C}=180\Rightarrow\widehat{C}=55\)
Ta có: \(\widehat{A}>\widehat{B}\left(80>45\right)\Rightarrow BC>AC\)(1)
\(\widehat{A}>\widehat{C}\left(80>55\right)\Rightarrow BC>AB\) (2)
\(\widehat{C}>\widehat{B}\left(55>45\right)\Rightarrow AB>AC\) (3)
Từ (1);(2);(3) ta có: BC > AB > AC
(Mình không biết ghi kí hiệu độ nên bạn chịu khó để ý rồi thêm vào bài làm nha)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,tam giác ABC vuông tại A ⇒ B+C=90 ⇒ C= 90-B mà B>45 ⇒ C<45
vậy C<B
2, tam giác ABC vuông tại A nên cạnh BC lớn nhất
AC là cạnh đối diện B, AB là cạnh đối diện C mà B>C nên AC>AB
vậy sắp xếp các cạnh từ lớn đến bé là BC,AC,AB
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Do tam giác ABC vuông tại A nên:
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)
Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 45^o\)
\(\Rightarrow\widehat{C}< 45^o< \widehat{B}\)
Vậy...
2.Áp dụng mối quan hệ giữa cạnh và góc trong tam giác và từ phần 1, ta thấy:
\(\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)
Vậy...
Ta có \(\widehat{A}=56^0;\widehat{B}=45^0\)
\(\Rightarrow\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(56^0+45^0\right)=79^0\)
Ta có \(\widehat{B}< \widehat{A}< \widehat{C}\Rightarrow AC< BC< AB\) (quan hệ giữa cạnh và góc trong tam giác).
\(\text{Xét }\Delta ABC\text{ có:}\)
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(\text{tính chất tổng ba góc một tam giác}\right)\)
\(\Rightarrow\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)\)
\(\Rightarrow\widehat{C}=180^0-\left(56^0+45^0\right)=79^0\)
\(\text{Xét }\Delta ABC\text{ có:}\)
\(\widehat{C}>\widehat{A}>\widehat{B}\left(79^0>56^0>45^0\right)\)
\(\Rightarrow AB>BC>AC\left(\text{quan hệ giữa góc và cạnh đối diện trong tam giác}\right)\)