Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S= 1/3 +2/3^2+3/3^3+..+100/3^100 So sánh 5^2019 và 5^2020
Hiện tại mình đang cần gấp giúp mk nha!
\(5^{2019}< 5^{2020}\)
vì
2020>2019
=>\(5^{2019}< 5^{2020}\)
a )
2100+2100= 2100(1+1) =2100.2 = 2100+1= 2101
b)
3100+3100 = 3100(1+1) = 2.3100
3101= 3100.3
ta thấy 3. 3100 > 2.3100 Vậy 3101 > 3100+3100
c) 20177012 > 20172337.3 >>> 80002337
70122017 < 80002337
suy ra: 20177012 >>> 70122017
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
Làm không biết đúng không nha :D
\(2^{3^{2^3}}=\left(\left(2^3\right)^2\right)^3=\left(8^2\right)^3=8^6\)
\(3^{2^{3^2}}=\left(\left(3^2\right)^3\right)^2=\left(9^3\right)^2=9^6\)
\(\Rightarrow\)
Bài 4 :
A = 2 + 22 + 23 + 24 + ... + 2100
2A = 22 + 23 + 24 + 25 + ..... + 2101
2A - A = ( 22 + 23 + 24 + 25 + ..... + 2101 ) - ( 2 + 22 + 23 + 24 + ... + 2100 )
A = 2101 - 2
* Bài 5 bạn đợi chút ạ !!!
(Cách làm thì để mình nhắn riêng nhé)
Bài 4 :
A = 2 + 22 + 23 + ... + 2100
2A = 2.(2 + 22 + 23 +.....+ 2100)
2A = 22 + 23 + 24 + ... + 2101
A = 2101 - 2
Bải 5 :
A = 1 + 2 + 22 +.. + 24
2A = 2(1+2+22+ 23 + 24)
2A = 2 + 23 + 24 + 25
A = 25 - 1
=> A = B
b) C = 3 + 32 + .. +3100
3C = 3(3 + 32 + .. + 3100)
3C = 32 + ... + 3100
2C = 3101 - 3
C = (3101-3) : 2
=> C = D
`C=3+3^{2}+3^{3}+...+3^{100}`
`=>3C=3^{2}+3^{3}+3^{4}+...+3^{101}`
`=>3C-C=2C=3^{101}-3`
`=>C=(3^{101}-3)/2=D`
Vậy : `C=D`
Ai trả lời nhanh mình cho 1 tick ạ ✅