\(\dfrac{98^{99}+1}{98^{89}+1}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

\(C-D=\dfrac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{89}+1\right)\left(98^{98}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)

\(=\dfrac{98^{187}+98^{99}+98^{88}+1-98^{197}-98^{89}-98^{98}-1}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)

\(=\dfrac{98^{99}-98^{98}+98^{88}-98^{89}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{98^{98}\left(98-1\right)-98^{88}\left(98-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)

\(=\dfrac{97.98^{98}-97.98^{88}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{97.98^{88}\left(98^{10}-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}>0\)

\(\Rightarrow C>D\)

17 tháng 3 2018

Vì C= \(\dfrac{98^{99}+1}{98^{89}+1}\)>1 thì nên áp dụng tính chất . Nên \(\dfrac{a}{b}\)>1 thì \(\dfrac{a}{b}\)>\(\dfrac{a+m}{b+m}\) ( a∈ N , b và m ∈ N) Ta có : C= \(\dfrac{98^{99}+1}{98^{89}+1}\)> \(\dfrac{98^{99}+1+97}{98^{89}+1+97}\)= \(\dfrac{98^{99}+98}{98^{89}+98}\) = \(\dfrac{98.98^{98}+98.1}{98.98^{88}+98.1}\) = \(\dfrac{98.\left(98^{98}+1\right)}{98.\left(98^{88}+1\right)}\)= \(\dfrac{98^{98}+1}{98^{88}+1}\)= B ⇔ Vậy \(\dfrac{98^{99}+1}{98^{89}+1}\)< \(\dfrac{98^{89}+1}{98^{88}+1}\) nên C<D

16 tháng 5 2017

D > C


3 tháng 3 2017

mil đang phân vân cả 3 đáp án : >,<,=

5 tháng 3 2017

C > D

18 tháng 6 2018

98   <1

99

98.99+1     Vì 98.99+1 >98.99 nên 98.99+1   >1

98.99                                             98.99

Suy  ra: 98     <    98.99+1  

            99            98.99

              

18 tháng 6 2018

A= \(\frac{98}{99}\)\(1\)

B= \(\frac{98.99+1}{98.99}\)=\(\frac{98.99}{98.99}+\frac{1}{98.99}\)=\(1+\frac{1}{98.99}\)> 1

=> A<1<B => A<B

25 tháng 2 2018

 D lớn hơn C nhiều lắm

25 tháng 2 2018

Bạn giải được không ?

27 tháng 4 2017

\(A=\frac{-\left(98^{98}+1\right)}{-\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}\)

\(B=\frac{98^{99}+1}{98^{89}+1}\)

A-1=\(\frac{98^{98}-98^{88}}{98^{88}+1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}\)

B-1=\(\frac{98^{99}-98^{89}}{98^{89}+1}=\frac{98^{89}.\left(98^{10}-1\right)}{98^{89}+1}\)

=>\(\frac{A-1}{B-1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}.\frac{98^{89}+1}{98^{89}.\left(98^{10}-1\right)}=\frac{98^{89}+1}{98.\left(98^{88}+1\right)}=\frac{98^{89}+1}{98^{89}+98}< 1\)

->A-1<B-1

->A<B

28 tháng 2 2016

Lấy C - D

\(C-D=\frac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{98}+1\right)\left(98^{89}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)

Tử số bằng:

\(98^{187}+98^{99}+98^{88}+1-98^{187}-98^{98}-98^{89}-1\)

=\(98^{99}+98^{88}-98^{98}-98^{89}\)

\(98^{99}-98^{98}+98^{88}-98^{89}\)

\(98^{98}\left(98-1\right)+98^{88}\left(1-98\right)\)

\(98^{98}.97-98^{88}.97=97\left(98^{98}-98^{88}\right)>0\)

Vậy C - D > 0 => C > D

28 tháng 2 2016

Do C>1 nên ta có:

C=9899+1/9889+1>9899+1+97/9889+1+97=9899+98/9889+98=98(9898+1)/98(9888+1)=9898+1/9888+1=D

suy ra C>D

11 tháng 3 2017

Bài 1:

Ta thấy A < 1

=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)

Vậy A < B

Bài 2:

Ta thấy C < 1

=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)

Vậy C < D