Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)
Vậy khi x = 36 thì A = \(\frac{5}{4}\)
2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)
= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)
= \(\frac{\sqrt{x}+2}{x-16}\)
Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)
\(a.A=\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}:\dfrac{\sqrt{x}-1}{x+1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\dfrac{x+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\)
\(b.x=4+2\sqrt{3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\left(TM\right)\)
\(\Rightarrow\sqrt{x}=\sqrt{3}+1\)
Ta có : \(\dfrac{\sqrt{3}+1}{\sqrt{3}+1-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}}\)
\(c.Để:A\in Z\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}=1+\dfrac{1}{\sqrt{x}-1}\in Z\)\(\Rightarrow\left(\sqrt{x}-1\right)\in\left\{\pm1\right\}\)
\(\circledast\sqrt{x}-1=1\Leftrightarrow x=4\left(TM\right)\)
\(\circledast\sqrt{x}-1=-1\Leftrightarrow x=0\left(TM\right)\)
KL.........
ĐKXĐ: x ≥ 0; x ≠ 4
Khi đó ta có:
\(\dfrac{2+\sqrt{x}}{2-\sqrt{ }x}\) \(-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}\)\(-\dfrac{4}{x-4}\)
= \(\dfrac{\left(2+\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)\(-\dfrac{\left(2-\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)\(+\dfrac{4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
= \(\dfrac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
= \(\dfrac{8\sqrt{x}+4}{x-4}\)
Ta có: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
\(=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\)
\(=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2z}{xyz}-\dfrac{2x}{xyz}-\dfrac{2y}{xyz}\)
\(=3-\dfrac{2\left(x+y+z\right)}{xyz}\)
\(=3-\dfrac{2xyz}{xyz}=3-2=1\)
Vậy P = 1
a: \(P=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
c: Để \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) là số nguyên thì \(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;2\right\}\)
=>x=0