Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M I 1 2
Trên tia \(AM\) của tam giác \(ABC\) lấy điểm \(I\) sao cho \(AM=IM\)
Ta có: \(AM=IM\) (theo giả thiết)
góc \(M_1\) \(=\) góc \(M_2\) (đối đỉnh)
\(MC=MB\) (do \(M\) là trung điểm của \(BC\))
nên \(\Delta AMC=\Delta IMB\) \(\left(cgc\right)\)
suy ra góc \(MAC\) \(=\) góc \(MIB\) (hai góc tương ứng)
Do đó, \(BI=AC>AB\)
Khi đó, xét \(\Delta ABI\) có \(BI>AB\)
nên góc \(BAI\) \(>\) góc \(BIA\)
\(\Leftrightarrow\) góc \(BAM\) \(>\) góc \(MAC\)
a, áp dụng định lí pytago vào tam giác ABC ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+4^2=25\)
\(BC=\sqrt{25}=5\)
B, xét tam giác BAC và DCA có:
BM=MC
AM=MD
góc BMA= DMC (đối đỉnh)
=> Tam giác BAC=DCA
=>BA=DC
Góc BAM=MDC=>BA//DC(so le trong)
cho mk xin **** nah
Gọi K là trung điểm của CD
a: Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK//BD
hay ID//MK
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
=>AD=DK=KC
=>AD=1/2DC
b: Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình
=>ID=MK/2
hay MK=2ID
Ta có: MK là đường trung bình của ΔBDC
nên MK=BD/2
=>BD/2=2ID
hay BD=4ID