Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)
= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(=2\times\frac{1009}{2020}\)
\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)
\(\Rightarrow B< 1\)

\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha

Gọi tổng trên là A
A = 1/22+1/33+.....+1/502
A = 1/2.2 + 1/3.3 +.....+ 1/50.50
A < 1/1.2 + 1/2.3 +.....+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1
Ai k mk mk k lại
A=(1/2)*(1/2)+(1/3)*(1/3)+...+(1/50)*(1/50) = 1/(2*2)+1/(3*3)+1/(4*4)+...+1/(50*50) < 1/(1*2)+1/(2*3)+...+1/(49*50)
Mà 1/(1*2)+1/(2*3)+...+1/(49*50) = 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 =1-1/50 <1
=> A<1

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)

1 + 1/2 + 1/3 + ... + 1/10
= 1 và 9/10 = 19/10 = 1,9 >2
tk nha
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}=1,9< 2\)
a = 1/2 nhân 2 + 1/3 nhân 3 + 1/4 nhân 4 + .....+ 1/2009 nhân 2009 + 1/2010 nhân 2010
so sánh a với 1

a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)
a=1+1+1+...+1+1(2009 số 1)
a=1.2009=2009
Vậy a>1

Ta co:\(A=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{14.14}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{1}{6.8}+...+\frac{2}{14.16}\left(1\right)\)
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}< \frac{8}{16}=\frac{1}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A< \frac{1}{2}\)
V...
\(B=\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+2019}\)
\(B=\dfrac{1}{\dfrac{\left(1+2\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+3\right).3}{2}}+\dfrac{1}{\dfrac{\left(1+4\right).4}{2}}+...+\dfrac{1}{\dfrac{\left(1+2019\right).2019}{2}}\)
\(B=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{2019.2020}\)
\(B=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2019.2020}\right)\)
\(B=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\right)\)
\(B=2.\left(\dfrac{1}{2}-\dfrac{1}{2020}\right)\)
\(B=1.\dfrac{1}{100}< 1\)
Vay B < 1