\(\sqrt{35}+\sqrt{99}v\text{à}16\)

b)\(\sq...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

a. \(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)

\(\Rightarrow\sqrt{35}+\sqrt{99}< 16\)

b. \(\sqrt{24}< \sqrt{25}=5\)

\(\sqrt{5}+\sqrt{10}>\sqrt{4}+\sqrt{9}=2+3=5\)

\(\Rightarrow\sqrt{24}< \sqrt{5}+\sqrt{10}\)

25 tháng 10 2023

Jdkdk

Jidkri

7 tháng 1 2018

\(\sqrt{2}+\sqrt{3}+\sqrt{5}< \sqrt{4}+\sqrt{9}+\sqrt{25}=2+3+5=10< 18\)

b) \(\sqrt{5}+\sqrt{7}+4< \sqrt{9}+\sqrt{9}+4=3+3+4=10< 12\)

7 tháng 1 2018

nhanh hộ mình với

15 tháng 7 2019

\(\sqrt{35}< \sqrt{36}=6,\)

\(\sqrt{15}< \sqrt{16}=4\)

\(\Rightarrow\sqrt{35}+\sqrt{15}< 6+4=10\)

\(\text{a, }2^{30}=8^{10}\)

     \(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)

\(\text{Vậy }2^{30}< 3^{20}\)

\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)

     \(3^{500}=\left(3^5\right)^{100}=243^{100}\)

\(\text{Vậy }5^{300}< 243^{100}\)

24 tháng 2 2020

a) Ta có \(\hept{\begin{cases}2^{24}=\left(2^6\right)^4=64^4\\3^{16}=\left(3^4\right)^4=81^4\end{cases}}\)

Mà \(64< 81\)

\(\Rightarrow64^4< 81^4\)

\(\Rightarrow2^{24}< 3^{16}\)

b) Ta có \(\hept{\begin{cases}2^{300}=\left(2^3\right)^{100}=8^{100}\\3^{200}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 8 < 9  

\(\Rightarrow8^{100}< 9^{100}\)

\(\Rightarrow2^{300}< 3^{200}\)

c) Ta có \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta có 71 < 2401 

\(\Rightarrow71^5< 2401^5\)

\(\Rightarrow71^5< 7^{20}\)

!! K chắc câu c

@@ Học tốt

Chiyuki Fujito

24 tháng 2 2020

a) \(2^{24}=\left(2^3\right)^8=8^8\)

\(3^{16}=\left(3^2\right)^8=9^8\)

Ta thấy 8<9\(\Rightarrow8^8< 9^8\Rightarrow2^{24}< 3^{16}\)

b) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Thấy \(8< 9\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c) \(7^{20}=\left(7^4\right)^5=2401^5\)

Ta thấy \(71< 2401\Rightarrow71^5< 2401^5\Rightarrow71^5< 7^{20}\)

20 tháng 7 2018

Dạng tổng quát:   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)         với   \(a\ge b\ge0\)

Chứng minh:   

Ta có:   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)

\(\Rightarrow\)\(\left(\sqrt{a-b}\right)^2\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)

\(\Rightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)

\(\Rightarrow\)\(-2b\ge-2\sqrt{ab}\)

\(\Rightarrow\)\(b\le\sqrt{ab}\)

\(\Rightarrow\)\(b^2\le ab\)  luôn đúng do  \(a\ge b\ge0\)

Vậy   \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

19 tháng 10 2017

a, Ta có: \(\sqrt{36}=6\)

\(36>35\Rightarrow\sqrt{36}>\sqrt{35}\) hay \(6>\sqrt{35}\)

28 tháng 7 2016

a) Ta có

\(\sqrt{35}< \sqrt{36}=6\)

\(\sqrt{99}< \sqrt{100}=10\)

\(\Rightarrow\sqrt{35}+\sqrt{99}< 10+6=16\)

b) Ta có

\(\sqrt{50}>\sqrt{49}=7\)

\(\sqrt{17}>\sqrt{16}=4\)

\(\Rightarrow\sqrt{50}+\sqrt{17}>7+4=11\)

28 tháng 7 2016

là vậy à ,cảm ơn nhen