Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\)
\(\sqrt{7}+\sqrt{15}\)
\(=\sqrt{7+15}\)
\(=4,69\)
\(4,69< 7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(b\)
\(\sqrt{7}+\sqrt{15}+1\)
\(=\sqrt{7+15}+1\)
\(=4,69+1\)
\(=5,69\)
\(\sqrt{45}\)
\(=6,7\)
\(5,69< 6,7\)
\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)
\(c\)
\(\frac{23-2\sqrt{19}}{3}\)
\(=\frac{22.4,53}{3}\)
\(=\frac{95,7}{3}\)
\(=31,9\)
\(\sqrt{27}\)
\(=5,19\)
\(31,9>5,19\)
\(\text{}\Rightarrow\text{}\text{}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)
\(d\)
\(\sqrt{3\sqrt{2}}\)
\(=\sqrt{3.1,41}\)
\(=\sqrt{4,23}\)
\(=2,05\)
\(\sqrt{2\sqrt{3}}\)
\(=\sqrt{2.1,73}\)
\(=\sqrt{3,46}\)
\(=1,86\)
\(2,05>1,86\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
\(Học \) \(Tốt !!!\)
a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)
Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)
b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)
Lại có : \(\sqrt{45}< \sqrt{49}< 7\)
Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)
\(\Rightarrow2\sqrt{19}>2.4=8\)
\(\Rightarrow-2\sqrt{19}< -8\)
\(\Rightarrow23-2\sqrt{19}< 23-8=15\)
\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)
Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)
d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)
\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
b) có
\(17< 10,25\Rightarrow\sqrt{17}< 4,5\)
\(29< 20,15\Rightarrow\sqrt{19}< 4,5\)
\(\Rightarrow\sqrt{17}+\sqrt{19}< 4,5+4,5=9\)
a) có \(27< 36\)nên \(\sqrt{27}< 6\)
\(\Rightarrow3\sqrt{27}< 18\)(1)
có \(19< 25\Rightarrow\sqrt{19}< 5\Rightarrow23-\sqrt{19}>18\)(2)
từ (1) và (2) suy ra
\(23-\sqrt{19}>3\sqrt{27}\Rightarrow\frac{23-\sqrt{19}}{3}>\sqrt{27}\)
xin lỗi giờ mình mới nghĩ ra câu a
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b/ Ta có:
\(\sqrt{n}< \sqrt{n+1}\)
\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
Áp dụng vào bài toán được
\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)
\(=2\left(\sqrt{37}-1\right)>6\)
Lời giải:
a)
\(\frac{23-2\sqrt{19}}{3}< \frac{23-2\sqrt{16}}{3}=\frac{23-2.4}{3}=5=\sqrt{25}< \sqrt{27}\)
b)
\((\sqrt{17}-\sqrt{19})^2>0\)
\(\Leftrightarrow 36> 2\sqrt{17.19}\)
\(\Leftrightarrow 72> 17+19+2\sqrt{17.19}=(\sqrt{17}+\sqrt{19})^2\)
Mà \(72< 81\Rightarrow 81> (\sqrt{17}+\sqrt{19})^2\)
\(\Rightarrow 9> \sqrt{17}+\sqrt{19}\)
a \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)
\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)
vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)
b \(6=\sqrt{36}\)
\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)
c \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)
\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)
vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)
\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....
\(\frac{23-2\sqrt{9}}{3}=\frac{23\sqrt{29.4}}{3}=\frac{23\sqrt{116}}{3}< \frac{23\sqrt{144}}{3}=\frac{23.12}{3}=92< 100=\sqrt{10}\)
Mà \(\sqrt{10}< \sqrt{27}\)nên \(\frac{23-2\sqrt{9}}{3}< \sqrt{27}\)
Vậy,...