\(A = \sqrt{1969} + \sqrt{1971} \) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A^2=3940+2\cdot\sqrt{1970^2-1}\)

\(B^2=3940+2\cdot\sqrt{1970^2}\)

mà \(1970^2-1< 1970^2\)

nên A<B

27 tháng 9 2021

Còn thêm cách nào khác ko ạ? Nếu có thì giúp em nha. Cảm ơn anh nhiều!

25 tháng 4 2020

\(a=\sqrt{1969}+\sqrt{1971}\)

\(\Rightarrow a^2=1969+2\sqrt{1969\cdot1971}+1971\)

\(\Rightarrow a^2=2\cdot1970+2\sqrt{1969\cdot1971}\)                        (1)

\(b=2\cdot\sqrt{1970}\)

\(\Rightarrow b^2=4\cdot1970=2\cdot1970+2\cdot1970\)                   (2)

có : \(1969+1971\ge2\sqrt{1969\cdot1971}\)

\(\Rightarrow2\cdot1970\ge2\sqrt{1969\cdot1971}\)    vì 1969 khác 1971

\(\Rightarrow2\cdot1970>2\sqrt{1969\cdot1971}\)               (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a^2< b^2\) mà a;b không âm

\(\Rightarrow a< b\)

23 tháng 4 2017

\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)

10 tháng 8 2017

So sánh:\(\sqrt{1969}+\sqrt{1971}\)\(2\sqrt{1970}\)

Ko bt bn giả ra chưa nhưng mk sẽ giải thử:

Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:

\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)

\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)

Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)

(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)

\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)

24 tháng 6 2018

Bình phương a và b lên để so sánh

Sorry thiếu với \(\forall m\inℝ\)

với cả  : P(x) = ax2 + bx +c , a khác 0

3 tháng 9 2016

ko phải bài lp8 , tối chắc luôn

1 tháng 7 2021

Trả lời:

a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)

b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)

\(=x-4y\)

6 tháng 6 2017

Ta có:

\(\left(a+b+c\right)^2=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)

\(=a^2+2ab+b^2+2ac+2bc+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)\) \(\Rightarrowđpcm\)

6 tháng 6 2017

Đề câu b max hư cấuoho

6 tháng 4 2017

kết quả là a=b nha bạn

19 tháng 1 2017

Kết quả là a = b đó

AH
Akai Haruma
Giáo viên
2 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\sqrt{\frac{2}{3}(1-a)}\leq \frac{\frac{2}{3}+1-a}{2}\)

\(\sqrt{\frac{2}{3}(1-b)}\leq \frac{\frac{2}{3}+1-b}{2}\)

\(\sqrt{\frac{2}{3}(1-c)}\leq \frac{\frac{2}{3}+1-c}{2}\)

Cộng theo vế:

\(\sqrt{\frac{2}{3}}(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c})\leq \frac{2+3-(a+b+c)}{2}\)

\(\Leftrightarrow \sqrt{\frac{2}{3}}(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c})\leq 2\)

\(\Leftrightarrow \sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\leq \sqrt{6}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)