Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
ta thấy:
\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)
=>B<A
vậy.......
Ta có:
\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)
\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)
Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
2001/2002=1-1/2002
2002/2003=1-1/2003
vi 1/2003<1/2002 nen 2001/2002<2002/2003
Ta có: 2003 x 2001 < 2002 x 2002
=> \(\frac{2001}{2002}\)<\(\frac{2002}{2003}\)
\(A=\frac{10^{2001}+1}{10^{2002}+1}=\frac{\left(10^{2001}+1\right)\left(10^{2003}+1\right)}{\left(10^{2002}+1\right)\left(10^{2003}+1\right)}=\frac{10^{4004}+10^{2001}+10^{2003}+1}{\left(10^{2002}+1\right)\left(10^{2003}+1\right)}\)
\(B=\frac{10^{2002}+1}{10^{2003}+1}=\frac{\left(10^{2002}+1\right)\left(10^{2002}+1\right)}{\left(10^{2003}+1\right)\left(10^{2002}+1\right)}=\frac{10^{4004}+2.10^{2002}+1}{\left(10^{2003}+1\right)\left(10^{2002}+1\right)}\)
Vì 102001 + 102003 < 2.102002 nên A < B
Cách 1:\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(\frac{2002}{2003}=1-\frac{1}{2003}\)
Vì \(\frac{1}{2002}>\frac{1}{2003}\) nên \(\frac{2001}{2002}<\frac{2002}{2003}\)
Cách 2:Ta có:\(\frac{2001}{2002}<1\)
=>\(\frac{2001}{2002}<\frac{2001+1}{2002+1}=\frac{2002}{2003}\)
Vậy \(\frac{2001}{2002}<\frac{2002}{2003}\)
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)
Ta c/m bài toán phụ:
Giả sử a<b (a,b\(\in\)N; b\(\ne\)0)
So sánh \(\frac{a}{b}\) với \(\frac{a+m}{b+m}\) (m\(\in\)N*)
Có: \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Vì a<b \(\Rightarrow\) am<bm (m\(\in\)N*) \(\Rightarrow\) ab+am<ab+bm
\(\Rightarrow\frac{ab+am}{b\left(b+m\right)}< \frac{ab+bm}{b\left(b+m\right)}\) hay \(\frac{a}{b}< \frac{a+m}{b+m}\)
Áp dụng bài toán trên ta có:
\(B=\frac{10^{2002}+1}{10^{2003}+1}< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)
\(\Rightarrow B< A\)
Vậy B<A
Cách 1 :
Ta có :
2001/2002 = 4008003/4010006 ( quy đồng mẫu số )
2002/2003=4008004/4010006 ( quy đồng mẫu số )
Vì phân số 4008004/4010006 > 4008003/4010006 nên phân số 2001/2002 < 2002/2003
Cách 2 :
2001/2002 = 4006002/4008004 ( quy đồng tử số )
2002/2003 = 4006002/4008003 ( quy đồng tử số )
Vì 4006002/4008004 < 4006002/4008003 nên phân số 2001/2002 < 2002/2003
Cách 3 :
2001/2002 = 1 - 1/2002
2002/2003 = 1 - 1/2003
Vì 1/2002 > 1/2003 nên 2001/2002 < 2002/2003
A=2001/2002+2002/2003
B=2001/2002+2003+2002/2002+2003
(tớ tách B ra đấy)
mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003
A>B