Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{25}+\frac{1}{41}\right)+\left(\frac{1}{61}+\frac{1}{85}+\frac{1}{113}\right)\)
< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{4}{20}+\frac{5}{20}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(đpcm)
ê cho hỏi tại sao lại ra < \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)
mà \(\frac{1}{5}+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
vậy A < 1/2
Ta có:
\(\hept{\begin{cases}\frac{1}{5}=\frac{1}{5}\\\frac{1}{16}< \frac{1}{5}\\\frac{1}{113}< \frac{1}{5}\end{cases}}...\)\(\Rightarrow\frac{1}{5}+\frac{1}{16}+\frac{1}{25}+\frac{1}{41}+\frac{1}{60}+\frac{1}{85}+\frac{1}{113}< \frac{1}{5}.7=\frac{7}{5}< \frac{10}{5}=2\)(ĐPCM)
TA CÓ \(\left(X-Y\right)^2\ge0\Rightarrow X^2-2\cdot X\cdot Y+Y^2\ge0\Rightarrow X^2+Y^2\ge2\cdot X\cdot Y\) \(\Rightarrow\frac{1}{5}=\frac{1}{1^2+2^2}<\frac{1}{2}\cdot\frac{1}{1\cdot2}\)
TƯƠNG TỰ TA CÓ \(\frac{1}{13}<\frac{1}{2}\cdot\frac{1}{2\cdot3}\) ................\(\frac{1}{2015^2+2016^2}<\frac{1}{2}\cdot\frac{1}{2015\cdot2016}\)
\(\Rightarrow\) \(\frac{1}{5}+\frac{1}{13}+..........+\frac{1}{2015^22016^2}<\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.........+\frac{1}{2015\cdot2016}\right)=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2016}\right)\)
VÌ \(1-\frac{1}{2016}<1\Rightarrow\frac{1}{2}\cdot\left(1-\frac{1}{2016}\right)<\frac{1}{2}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+....+\frac{1}{2015^2+2016^2}<\frac{1}{2}\)
S = \(\frac{1}{5}+\frac{1}{9}+\frac{1}{10}+\frac{1}{41}+\frac{1}{42}=\frac{5932}{12915}=0.459310878\approx0.45\)
\(\frac{1}{2}=0.5\)
Vì 0.45 < 0.5
\(\Leftrightarrow\) S < 1/2