\(\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+...+\frac{1}{9240}\)và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

15 tháng 7 2015

Làm lại câu a

\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(2S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(2S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)

\(S=\frac{99}{100}:2\)suy ra \(S=\frac{99}{200}\)

15 tháng 7 2015

a, 2S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

\(2S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{100}\)

\(2S=1-\frac{1}{100}\)suy ra \(2S=\frac{99}{100}\)

\(S=\frac{99}{100}:2=\frac{99}{200}\)

14 tháng 12 2024

.