\(A=\frac{10^8-2}{10^8-1}\)và \(B=\frac{10^8-4}{10^8-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

mk giải cho câu A rồi tự suy mấy câu khác nhé!

ta có : A = 10^8 + 2/10^8 - 1

     => A = 10^8 - 1 + 3/10^8 - 1

     => A = 1+ 3/10^8 - 1

          B = 10^8/10^8 - 3

    =>  B = 10^8 - 3 + 3/10^8 - 3

    =>  B = 1+ 3/10^8 - 3

vì 3/10^8 - 1 < 3/10^8 - 3

=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3

=> A < B

vậy A < B

cách này cô dạy mk đó

27 tháng 11 2016

b/ Ta có 

\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)

\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

c/ Đặt \(10^7=a\)thì ta có

\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)

Giả sử A>B thì ta có

\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)

\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)

\(\Leftrightarrow617a+313>0\)(đúng)

Vậy A>B

c/ Đặt \(10^{1991}=a\)thì ta có

\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)

Giả sử A>B thì ta có

\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)

\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)

\(\Leftrightarrow-81a>0\)(sai)

Vậy A < B

a/ Thì quy đồng là ra nhé

27 tháng 11 2016

a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh

9 tháng 6 2016

??????????????????????????????????????????????????????????????????????????????????????

9 tháng 6 2016

1/ Do A > 1 ; B < 1 nên A > B

2/ Áp dụng a/b > 1 <=> a/b < a+m/b+m ( a,b,m thuộc N*)

Do A > 1 nên A < 20158 + 3 + 1 / 20158 - 2 + 1 = 20158 + 4 / 20158 - 1 = B

=> A < B

30 tháng 5 2015

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(\frac{3}{10^8-1}<\frac{3}{10^8-3}\) nên A < B

\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}=\frac{10^8}{10^8-3}\)

vậy A<B

10 tháng 4 2018

Ta có : 

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Do \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\)

\(\Rightarrow1+\frac{3}{10^8-1}>1+\frac{3}{10^8-3}\)

\(\Rightarrow\frac{10^8+2}{10^8-1}>\frac{10^8}{10^8-3}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

Vì B > 1 => \(\frac{10^8}{10^8-3}\)>\(\frac{10^8+2}{10^8-3+2}\)\(\frac{10^8+2}{10^8-1}=A\)

Vậy B>A

20 tháng 4 2017

trừ A cho 3/(108-1)   (1)  = 1

trừ B cho 3/(108-3)    (2) = 1

dễ thấy (1)>(2) suy ra A>B

12 tháng 7 2016

Đề hình như sai rùi bn, ở A mẫu phải là 108 - 1 chứ

Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)

Ta có:

\(B=\frac{10^8}{10^8-3}< \frac{10^8+2}{10^8-3+2}=\frac{10^8+2}{10^8-1}=A\)

=> B < A

29 tháng 6 2020

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\text{ ta có: }\frac{B-A}{3}=\frac{1}{10^8-3}-\frac{1}{10^8-1}>0\text{ do đó:}B>A\)

1 cách đó còn 1 cách nữa là có cái sau:

\(\text{Với:}a,b,c\text{ nguyên dương;}a>b\text{ thì:}\frac{a}{b}>\frac{a+n}{b+n};A=\frac{10^8+2}{10^8-3+2}\left(\text{xong}\right)\)