Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{101\sqrt{100}+100\sqrt{101}}\)
Ta có : \(\frac{1}{\sqrt{k}+\sqrt{k+1}}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Áp dụng : A = 2\(\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)= \(2\left(\sqrt{101}-1\right)\) \(\ge\) \(2\left(\sqrt{100}-1\right)=2\left(10-1\right)=2\times9=18\)
B = \(\frac{181}{20}=9,05\) < 18 nên suy ra : A>B
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng bài toán ta được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{101\sqrt{100}+100\sqrt{101}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}-\frac{1}{\sqrt{101}}\)
\(=1-\frac{1}{\sqrt{101}}\)
\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)-2
=\(\left[\left(\frac{99}{2}+1\right)+\left(\frac{98}{3}+1\right)+...+\left(\frac{1}{100}+1\right)+1\right]:\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
=\(\left(\frac{101}{2}+\frac{101}{3}+\frac{101}{4}+....+\frac{101}{100}+\frac{101}{101}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
=\(101\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}\right)-2\)
=99
Thôi để t làm cho
Ta có \(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\)
= \(100+\frac{101-2}{2}+\frac{101-3}{3}+...+\frac{101-100}{100}\)
= 100 - 99 + \(\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}\)
= \(1+\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}\)
= 101(\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}\))
Thế vào cái ban đầu được 99