\(\dfrac{\left(2^3+1\right)\left(3^3+1\right)...\left(100^3+1\right)}{\left(2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2017

Lời giải:

Ta có:

\(A=\frac{(2^3+1)(3^3+1)(4^3+1)...(100^3+1)}{(2^3-1)(3^3-1).....(100^3-1)}\)

\(=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1).....(100+1)(100^2-100+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(100-1)(100^2+100+1)}\)

\(=\frac{3.4...101(2^2-2+1)(3^2-3+1)...(100^2-100+1)}{1.2.3..99(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

\(=\frac{100.101}{2}.\frac{(2^2-2+1)(3^2-3+1)....(100^2-100+1)}{(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)

Xét: \(a^2+a+1=(a+1)^2-a=(a+1)^2-(a+1)+1\)

Do đó:

\(\left\{\begin{matrix} 2^2+2+1=3^2-3+1\\ 3^2+3+1=4^2-4+1\\ ....\\ 99^2+99+1=100^2-100+1\\ \end{matrix}\right.\)

\(\Rightarrow A=\frac{100.101}{2}.\frac{2^2-2+1}{100^2+100+1}=5050.\frac{3}{10101}\)

\(A< 5050.\frac{3}{10100}=\frac{5050}{10100}.3=\frac{3}{2}\)

Vậy \(A< \frac{3}{2}\) hay \(A< B\)

10 tháng 12 2019

Cái chỗ so sánh a với tích kia là \(\frac{3}{10101}\) chứ ko phải là\(\frac{3}{10100}\) nhé

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

\(A=\frac{(2^3+1)(3^3+1)....(1000^3+1)}{(2^3-1)(3^3-1)....(1000^3-1)}=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1)....(1000+1)(1000^2-1000+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(1000-1)(1000^2+1000+1)}\)

\(=\frac{(2+1)(3+1)...(1000+1)}{(2-1)(3-1)...(1000-1)}.\frac{(2^2-2+1)(3^2-3+1)...(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)...(1000^2+1000+1)}\)

\(=\frac{1000.1001}{2}.\frac{(2^2-2+1)(3^2-3+1)....(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)....(1000^2+1000+1)}\)

Ta thấy: \(n^2-n+1=(n^2-2n+1)+n=(n-1)^2+(n-1)+1\)

\(\Rightarrow 3^2-3+1=2^2+2+1\)

\(4^2-4+1=3^2+3+1\)

......

\(1000^2-1000+1=999^2+999+1\)

\(\Rightarrow (3^2-3+1)(4^2-4+1)...(1000^2-1000+1)=(2^2+2+1)(3^2+3+1)...(999^2+999+1)\)

Do đó: \(A=\frac{1000.1001}{2}.\frac{2^2-2+1}{1000^2+1000+1}=\frac{3}{2}.\frac{1000.1001}{1000(1000+1)+1}=\frac{3}{2}.\frac{1000.1001}{1000.1001+1}< \frac{3}{2}\)

22 tháng 4 2017

a) 1x13x2x31=2xx2+x+11x−1−3x2x3−1=2xx2+x+1

Ta có: x31=(x1)(x2+x+1)x3−1=(x−1)(x2+x+1)

=(x1)[(x+12)2+34]=(x−1)[(x+12)2+34] cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ: x ≠ 1

Khử mẫu ta được:

x2+x+13x2=2x(x1)2x2+x+1=2x22xx2+x+1−3x2=2x(x−1)⇔−2x2+x+1=2x2−2x

4x23x1=0⇔4x2−3x−1=0

4x(x1

a: \(\Leftrightarrow\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{5}x-1\right)^3\)

=>1/3x-1=1/5x-1

=>2/15x=0

hay x=0

b: Đặt 2x+1=a; 3x-1=b

Theo đề, ta có \(\left(a+b\right)^3-a^3-b^3=0\)

=>3ab(a+b)=0

=>5x(2x+1)(3x-1)=0

hay \(x\in\left\{0;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

c: Đặt x-3=a; x+1=b

Theo đề, ta có: \(\left(a+b\right)^3=a^3+b^3\)

=>3ab(a+b)=0

=>(x-3)(x+1)(2x-2)=0

hay \(x\in\left\{3;-1;1\right\}\)