\(A=\dfrac{2011+2012}{2012+2013}\) và \(B=\dfrac{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

DỄ THẤY A<1

B=(2011.2013+2012.2012)/2012.2013

ta có 2011.2013+2012.2012-2012.2013=2012.2012+2013.(2011-2012)

=2012.2012-2013

suy ra 2011.2013+2012.2012>2012.2013

=> B >1 mà A <1

SUY RA B>A

26 tháng 5 2017

B = 2011/2012+2012/2013 > 2011/2013+ 2012/2013 = 2011+2012/2013>2011+2012/ 2012+2013= A.

Vậy B>A
16 tháng 4 2017

Mai Quỳnh

B = 2011/2012+2012/2013 > 2011/2013+ 2012/2013

= 2011+2012/2013>2011+2012/ 2012+2013

= A.

Vậy B>A

Ta có:\(A=\dfrac{2011+1012}{2012+2013}\)

\(A=\dfrac{2011}{4023}+\dfrac{2012}{4023}< \dfrac{2011}{2012}+\dfrac{2012}{2013}=B\)

=> A<B

Vậy A<B

19 tháng 4 2017

Bài 1:

Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)

Dễ thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)

Bài 2:

\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)

28 tháng 2 2019

Ta có

A=\(\dfrac{2011+2012}{2012+2013}\)=\(\dfrac{2011}{2012+2013}\)+\(\dfrac{2012}{2012+2013}\)(1)

B=\(\dfrac{2011}{2012}\)+\(\dfrac{2012}{2013}\)(2)

=>A>B

A lớn

B nhỏ

28 tháng 2 2019

gõ nhầm

phải là A<B

A nhỏ

B lớn

10 tháng 5 2017

\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:

\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)

Vậy \(P>Q\)

10 tháng 8 2017

Ta có : \(B=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}=\dfrac{2012}{2012+2013}\)

Mà : \(\dfrac{2011}{2012}>\dfrac{2011}{2012+2013}\)

\(\dfrac{2012}{2013}>\dfrac{2012}{2012+2013}\)

\(\Rightarrow \dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)

\(\Rightarrow\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011+2012}{2012+2013}\)

Vậy A > B

7 tháng 4 2019

Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)

    Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\)                        ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)

 \(\Rightarrow B>A\)

7 tháng 4 2019

nhầm là A > B

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

6 tháng 3 2018

a) Giải

Ta có: \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}+\dfrac{1}{2^{2013}}\)

\(\Rightarrow2S=\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{2012}}+\dfrac{2}{2^{2013}}\)

\(2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2S-S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{2012}}-\dfrac{1}{2^{2013}}\)

\(\Rightarrow S=1-\dfrac{1}{2^{2013}}\)
\(\Rightarrow S=\dfrac{2^{2013}-1}{2^{2013}}\)

6 tháng 3 2018

b) Giải

Từ \(A=\dfrac{2011^{2012}+1}{2011^{2013}+1}\)

\(\Rightarrow2011A=\dfrac{2011^{2013}+20111}{2011^{2013}+1}=\dfrac{2011^{2013}+1+2010}{2011^{2013}+1}=1+\dfrac{2010}{2011^{2013}+1}\)

Từ \(B=\dfrac{2011^{2013}+1}{2011^{2014}+1}\)

\(\Rightarrow2011B=\dfrac{2011^{2014}+2011}{2011^{2014}+1}=\dfrac{2011^{2014}+1+2010}{2011^{2014}+1}=1+\dfrac{2010}{2011^{2014}+1}\)

Vì 20112013 + 1 < 20112014 + 1 và 2010 > 0

\(\Rightarrow\dfrac{2010}{2011^{2013}+1}>\dfrac{2010}{2011^{2014}+1}\)

\(\Rightarrow2011A>2011B\)

\(\Rightarrow A>B\)

Vậy A > B.

21 tháng 3 2019

ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)

\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)

....

21 tháng 3 2019

Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

          \(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

CỘNG VẾ THEO VẾ,TA CÓ:

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)

\(\Rightarrow A>B\)

Vậy A>B