\(\dfrac{20^{10}+1}{20^{10}-1}\) và B= \(\dfrac{20^{10}-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}>\dfrac{2}{20^{10}-3}\Leftrightarrow A>B\)

27 tháng 5 2017

Ta có:

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\)

\(\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).

31 tháng 7 2017

Ta có \(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(\Leftrightarrow A=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(\Leftrightarrow B=1+\dfrac{2}{20^{10}-3}\)

Vì 1=1 mà\(20^{10}-1>20^{10}-3\Rightarrow\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)

hay A < B

Vậy A < B

4 tháng 5 2017

Ta có :

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{10^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{10^{10}-3}=1+\dfrac{2}{10^{10}-3}\)

\(1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\Rightarrow A< B\)

4 tháng 5 2017

Ta có:A=\(\dfrac{20^{10}+1}{20^{10}-1}\)>1\(\Leftrightarrow\)\(\dfrac{20^{10}+1}{20^{10}-1}< \dfrac{20^{10}+1-2}{20^{10}-1-2}\)=\(\dfrac{20^{10}-1}{20^{10}-3}\)=B

Vậy A<B

16 tháng 4 2017

Ta có :

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

\(1+\dfrac{2}{20^{10}-1}< 1+\dfrac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

~ Chúc bn học tốt~

16 tháng 4 2017

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\) (1)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\) (2)

\(20^{10}-1>20^{10}-3\)

nên \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\) (3)

từ (1), (2) và (3) suy ra A<B

6 tháng 8 2018

Ta có :
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1\dfrac{2}{20^{10}-3}\)

\(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow A< B\)

6 tháng 8 2018

\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1+2}{20^{10}-1}=1\dfrac{2}{20^{10}-1}\) (đổi ra hỗn số)

\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3+2}{20^{10}-3}=1\dfrac{2}{20^{10}-3}\)

Do \(20^{10}-1>20^{10}-3\) nên \(\dfrac{2}{20^{10}-1}< \dfrac{2}{20^{10}-3}\Rightarrow1\dfrac{2}{20^{10}-1}< 1\dfrac{2}{20^{10}-3}\Leftrightarrow A< B\)

Đáp số: A <B

\(A=\dfrac{20^{10}-1+2016}{20^{10}-1}=1+\dfrac{2016}{20^{10}-1}\)

\(B=\dfrac{20^{10}-3+2016}{20^{10}-3}=1+\dfrac{2016}{20^{10}-3}\)

mà \(20^{10}-1>20^{10}-3\)

nên A<B

6 tháng 4 2018

A=20 mủ 10 - 1 +12/(20 mủ 10 -1)=1+12/20 MỦ 10 -1

B=20 mủ 10 - 3 + 2 /(20 mủ 10 - 3)=1+2/20 mủ 10 - 3

Vì ... bạn tự làm nha.nhớ k đấy

6 tháng 4 2018

A=\(\frac{20^{10}+1}{20^{10}-1}\)=\(\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)=\(\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}\)=\(1+\frac{2}{20^{10}-1}\)

B= \(\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)=\(\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì 2010-1 > 2010-3

=>\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

=> A < B

Vậy A < B

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

A = \(\frac{20^{10}+1}{20^{10}-1}=1\)    B = \(\frac{20^{10}-1}{20^{10}-3}=1\)

Nên A = B

14 tháng 5 2017

\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\Rightarrow A< B\)

10 tháng 5 2018

ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A

vậy B>A

nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy