Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
\(a.\)
\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)
\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)
\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)
\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)
\(10A=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)
\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)
\(10B=1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)
xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)
b
\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{13}{38}>\frac{29}{88}\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có: \(3^{301}>3^{300}=\left(3^3\right)^{100}=27^{100}\left(1\right)\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\left(2\right)\)
Do \(25^{100}< 27^{100}\Rightarrow5^{200}< 3^{300}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow5^{199}< 5^{200}< 3^{300}< 3^{301}\Rightarrow5^{199}< 3^{301}\)
c, Ta có: \(\frac{10^{2018}+5}{10^{2018}-8}=\frac{10^{2018}-8+13}{10^{2018}-8}=1+\frac{13}{10^{2018}-8}\)
\(\frac{10^{2019}+5}{10^{2019}-8}=\frac{10^{2019}-8+13}{10^{2019}-8}=1+\frac{13}{10^{2019}-8}\)
Do \(\frac{13}{10^{2018}-8}>\frac{13}{10^{2019}-8}\Rightarrow1+\frac{13}{10^{2018}-8}>1+\frac{13}{10^{2019}-8}\Rightarrow\frac{10^{2018}+5}{10^{2018}-8}>\frac{10^{2019}+5}{10^{2019}-8}\)