Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)16^{19}=\left(8\times2\right)^{19}=8^{19}\times2^{19}>8^{19}>8^{15}\)
\(\Rightarrow16^{19}>8^{15}\)
\(b)81^8=\left(3^4\right)^8=3^{24}< 3^{33}=\left(3^3\right)^{11}=27^{11}\)
\(\Rightarrow27^{11}>81^8\)
\(c)625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow125^7>625^5\)
\(d)244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>3^{52}=\left(3^4\right)^{13}=81^{13}>80^{13}\)
\(\Rightarrow244^{11}>80^{13}\)
\(d)31^{17}>17^{17}>17^{14}\)
\(\Rightarrow31^{17}>17^{14}\)
a ) 27 11 và 81 8
Ta có :
27 11 = ( 3 3 ) 11 = 3 33
81 8 = ( 3 4 ) 8 = 3 32
Vì 3 33 > 3 32
=> 27 11 > 81 8
b ) 625 5 và 125 7
Ta có :
625 5 = ( 5 4 ) 5 = 5 20
125 7 = ( 5 3 ) 7 = 5 21
Ví 5 20 < 5 21
=> 625 5 < 125 7
c ) 5 36 và 11 24
Ta có
5 36 = ( 5 6 ) 6 = 15625 6
11 24 = ( 11 4 ) 6 = 14641 6
Vì 15625 6 < 14641 6
=> 5 36 > 1124
d ) 3 2n và 2 3n
Ta có :
3 2n = ( 3 2 ) n = 9 n
2 3n = ( 2 3 ) n = 8 n
Vì 9 n > 8 n
=> 3 2n > 2 3n
so sánh
\(27^{11}\)và \(81^8\)
\(625^5\)và \(125^7\)
\(5^{23}\)và \(6.5^{22}\)
\(7.2^{13}\)và \(2^{16}\)
a) 2711 = ( 32 ) 11 = 32.11 = 322
818 = ( 34 ) 8 = 34.8 = 332
Vì 22 < 32 nên 322 < 332 hay 2711 < 818
b) 6255 = ( 54 ) 5 = 54.5 = 520
1257 = ( 53 ) 7 = 53.7 = 521
Vì 20 < 21 nên 520 < 521 hay 6255 < 1257
c) 523 = 522 . 5
6 . 522 giữ nguyên
Vì 5 < 6 nên 523 < 6 . 522
d) 7 . 213 giữ nguyên
216 = 213 . 23 = 213 . 8
Vì 7 < 8 nên 7 . 213 < 216
Bài 1:
\(a,8.6+288.\left(x+3\right)^2=50\\ \Leftrightarrow48+288\left(x+3\right)^2=50\\ \Leftrightarrow\left(x+3\right)^2=\dfrac{1}{144}\\ \Leftrightarrow x+3\in\left\{-\dfrac{1}{12};\dfrac{1}{12}\right\}\\ \Leftrightarrow x\in\left\{-\dfrac{37}{12};-\dfrac{35}{12}\right\}\\ Vậy.....\)
\(b,\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>Số lượng số hạng của tổng trên là (x+100-x-1):1+1=100(số hạng)
\(\Rightarrow\dfrac{\left(2x+101\right).100}{2}=5750\\ \Rightarrow2x+101=\dfrac{5750.2}{100}\\ \Rightarrow2x+101=115\\ \Rightarrow2x=14\\ \Rightarrow x=7\\ Vậy........\)
a. Ta có : 27 ^11 = (3^3)^11= 3^33
81^8=(3^4)^8 = 3 ^32
=> 27^11>81^8
b. 625^5= (5^4)^5=5^20
125^7=(5^3)^7=5^21
=> 125^7>625^5
c. 5^36= (5^3)^12 =125^12
11^24=(11^2)^12= 121^12
=> 5^36>11^24
d. 3^2n = 9^n
2^3n= 8^n
=> 3^2n>2^3n
\(a,27^{11}\)và \(81^8\)
Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
\(b,625^5\)và \(125^7\)
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
a)\(27^{11}=3^{33}>3^{32}=81^8\)
b)\(2^{5000}=32^{1000}>25^{1000}=5^{2000}\)
c)\(5^{36}=125^{12}>121^{12}=11^{24}\)
d)\(3^2>2^3\Rightarrow3^{2n}>2^{3n}\)\(n\in\)N*
a) Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì 33>32 \(\Rightarrow\)333 > 332 hay 2711 > 818
b) Ta có :
25000 = \(\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Vì 32 > 25 \(\Rightarrow\)32^1000 > 25^1000 hay 2^5000 > 5^2000
c) Ta có:
5^36 = 5^12.3 = (5^3)^12 = 125^12
11^24 = 11^12.2 = (11^2)^13 = 121^12
Vì 125>121 => 125^12>121^12 hay 5^36>11^24
\(3^{200}>2^{300}\) \(27^5< 243^3\)
\(9^{70}>8^{100}\) \(31^{11}>17^{14}\)
nhớ phải kết bn hoặc đấy
a) Ta có: 3^200=3^2.100=9^100
2^300=2^3.100=8^100
Vì 9^100>8^100 nên 3^200>2^300
a) Ta có :
\(1024^9=\left(2^{10}\right)^9=2^{90}\)
Vì \(2^{100}>2^{90}\Leftrightarrow2^{100}>1024^9\)
b) Ta có :
\(9^{12}=\left(3^2\right)^{12}=3^{24}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
Vì \(3^{24}>3^{21}\Leftrightarrow9^{12}>27^7\)
c) Ta có :
\(125^{80}=\left(5^3\right)^{80}=5^{240}\)
\(25^{118}=\left(5^2\right)^{118}=5^{236}\)
Vì \(5^{240}>5^{236}\Leftrightarrow125^{80}>25^{118}\)
a: \(=8^8\left(8^2-8-1\right)=8^8\cdot55⋮5\)
b: \(=7^4\left(7^2+7+1\right)=7^4\cdot57⋮̸11\)
\(a,81^3=\left(9^2\right)^3=9^6\)
Vì \(9^{27}>9^6\) nên \(9^{27}>81^3\)
\(b,5^{14}=\left(5^2\right)^7=25^7\)
Vì \(25^7< 27^7\) nên \(5^{14}< 27^7\)
\(c,10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}< 1024^{10}\) nên \(10^{30}< 2^{100}\)