So sánh A.7 + 2 căn 2 ... 10

B. C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 2căn 2=căn 8<căn 9=3

=>\(2\sqrt{2}+7< 3+7=10\)

b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)

\(3^2=9=5+4\)

mà \(2\sqrt{6}>4\)

nên \(\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)

=>\(\sqrt{3}+\sqrt{2}>3\)

10 tháng 11 2018

VT=b2c2a(a+b+c)+bc+a2c2b(a+b+c)+ac+a2b2c(a+b+c)+abVT=b2c2a(a+b+c)+bc+a2c2b(a+b+c)+ac+a2b2c(a+b+c)+ab

VT=b2c2a2+ab+ac+bc+

3 tháng 9

Ta có:

\(B = \sqrt{1 - \frac{1}{x y}} , \text{v}ớ\text{i}\&\text{nbsp}; x , y \in \mathbb{Q}^{*} , \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; x^{3} + y^{3} = 2 x^{2} y^{2}\)

Cần chứng minh rằng: \(B \in \mathbb{Q}\) (tức là biểu thức dưới căn là một số hữu tỉ và là bình phương của một hữu tỉ).


🔎 Phân tích bài toán

📌 Bước 1: Nhắc lại hằng đẳng thức:

\(x^{3} + y^{3} = \left(\right. x + y \left.\right)^{3} - 3 x y \left(\right. x + y \left.\right)\)

Hoặc dùng:

\(x^{3} + y^{3} = \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)

Ta tạm để đó, giờ tập trung xử lý từ điều kiện:

📌 Bước 2: Từ điều kiện:

\(x^{3} + y^{3} = 2 x^{2} y^{2}\)

Ta sẽ chia 2 vế cho \(x y \neq 0\) (vì \(x , y \in \mathbb{Q}^{*}\)):

\(\frac{x^{3} + y^{3}}{x y} = 2 x y\)\(\Rightarrow \frac{x^{3}}{x y} + \frac{y^{3}}{x y} = 2 x y \Rightarrow x^{2} + y^{2} = 2 x y\)


📌 Bước 3: Từ \(x^{2} + y^{2} = 2 x y\)

Chuyển vế:

\(x^{2} - 2 x y + y^{2} = 0 \Rightarrow \left(\right. x - y \left.\right)^{2} = 0 \Rightarrow x = y\)


🔁 Quay lại biểu thức \(B\)

Ta có:

\(B = \sqrt{1 - \frac{1}{x y}}\)

Nhưng vì \(x = y\), nên:

\(x y = x^{2} \Rightarrow \frac{1}{x y} = \frac{1}{x^{2}}\)

Vậy:

\(B = \sqrt{1 - \frac{1}{x^{2}}} = \sqrt{\frac{x^{2} - 1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)

Vì \(x \in \mathbb{Q}^{*}\), nên \(x \neq 0\), và cần kiểm tra xem \(\sqrt{x^{2} - 1} \in \mathbb{Q}\) hay không để suy ra \(B \in \mathbb{Q}\).


📌 Bước 4: Giả sử \(x = \frac{a}{b} \in \mathbb{Q}^{*}\), rút gọn tối giản

\(x^{2} = \frac{a^{2}}{b^{2}} \Rightarrow x^{2} - 1 = \frac{a^{2} - b^{2}}{b^{2}}\)

Vậy:

\(\sqrt{x^{2} - 1} = \sqrt{\frac{a^{2} - b^{2}}{b^{2}}} = \frac{\sqrt{a^{2} - b^{2}}}{b}\)

→ Để \(\sqrt{x^{2} - 1} \in \mathbb{Q}\), thì \(\sqrt{a^{2} - b^{2}}\) phải là số nguyên.

=> \(a^{2} - b^{2}\) phải là chính phương.

👉 Ví dụ chọn thử:

Giả sử \(x = 1 \Rightarrow x^{2} - 1 = 0 \Rightarrow B = 0 \in \mathbb{Q}\)

Hoặc \(x = \frac{5}{3} \Rightarrow x^{2} = \frac{25}{9} \Rightarrow x^{2} - 1 = \frac{16}{9} \Rightarrow \sqrt{x^{2} - 1} = \frac{4}{3} \Rightarrow B = \frac{4}{5} \in \mathbb{Q}\)

Vậy chỉ cần chọn x hợp lý thì \(B \in \mathbb{Q}\)


✅ Kết luận:

Với điều kiện \(x^{3} + y^{3} = 2 x^{2} y^{2} \Rightarrow x = y\), ta có:

\(B = \sqrt{1 - \frac{1}{x^{2}}} = \frac{\sqrt{x^{2} - 1}}{\mid x \mid}\)

Vì \(x \in \mathbb{Q}^{*}\), nên biểu thức trên là hữu tỉ nếu \(x^{2} - 1\) là chính phương hữu tỉ – điều này đúng vì \(x\) ban đầu là số hữu tỉ tùy chọn thỏa điều kiện.

Do đó, \(B \in \mathbb{Q}\).

3 tháng 9

Tham khảo

9 tháng 8 2016

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

9 tháng 8 2016

Câu b cũng xét hiệu tương tự cấu a

 

12 tháng 6 2019

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

12 tháng 6 2019

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

7 tháng 7 2017

à hiểu ý chủ thớt rồi :))

Đặt \(\sqrt{x+5}=y-2\) thì dc hệ đối xứng loại 2

7 tháng 7 2017

đặt \(\sqrt{x+5}=y\) cx dc mà

29 tháng 4 2019

Áp dụng bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) 

\(\Rightarrow\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\)

C/m tương tự \(\sqrt{b^2+c^2}\ge\frac{b+c}{\sqrt{2}}\)

                        \(\sqrt{a^2+c^2}\ge\frac{a+c}{\sqrt{2}}\)

Cộng 3 vế của 3 bđt trên lại được

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{2\left(a+b+c\right)}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Dấu "=" tại a = b = c = 1/3

29 tháng 4 2019

cảm ơn bạn nhiều nha

a: \(\sqrt{x^2-4x+4}=3x+1\)

=>\(\sqrt{\left(x-2\right)^2}=3x+1\)

=>|x-2|=3x+1

=>\(\begin{cases}3x+1\ge0\\ \left(3x+1\right)^2=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ \left(3x+1-x+2\right)\left(3x+1+x-2\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac13\\ \left(2x+3\right)\left(4x-1\right)=0\end{cases}\Rightarrow\begin{cases}x\ge-\frac13\\ x\in\left\lbrace-\frac32;\frac14\right\rbrace\end{cases}\)

=>\(x=\frac14\)

b:

ĐKXĐ: \(x^2-4x+1\ge0\)

=>\(x^2-4x+4-3\ge0\)

=>\(\left(x-2\right)^2\ge3\)

=>\(\left[\begin{array}{l}x-2\ge\sqrt3\\ x-2\le-\sqrt3\end{array}\right.\Rightarrow\left[\begin{array}{l}x\ge2+\sqrt3\\ x\le2-\sqrt3\end{array}\right.\)

\(\sqrt{x^2-4x+1}=x\)

=>\(\begin{cases}x\ge0\\ x^2-4x+1=x^2\end{cases}\Rightarrow\begin{cases}x\ge0\\ -4x+1=0\end{cases}\Rightarrow x=\frac14\)

c: \(\sqrt{x^2-2x+5}=x+3\)

=>\(\begin{cases}x+3\ge0\\ x^2-2x+5=\left(x+3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-3\\ x^2+6x+9=x^2-2x+5\end{cases}\)

=>\(\begin{cases}x\ge-3\\ x^2+6x+9-x^2+2x-5=0\end{cases}\Rightarrow\begin{cases}x\ge-3\\ 8x+4=0\end{cases}\Rightarrow x=-\frac12\)

d: \(\sqrt{x^2-10x+25}-2x=3\)

=>\(\sqrt{\left(x-5\right)^2}=2x+3\)

=>|x-5|=2x+3

=>\(\begin{cases}2x+3\ge0\\ \left(2x+3\right)^2=\left(x-5\right)^2\end{cases}\Rightarrow\begin{cases}x\ge-\frac32\\ \left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{cases}\)

=>\(\begin{cases}x\ge-\frac32\\ \left(x+8\right)\left(3x-2\right)=0\end{cases}\Rightarrow x=\frac23\)

e:

ĐKXĐ: \(\left[\begin{array}{l}x\ge3\\ x\le1\end{array}\right.\)

\(\sqrt{x^2-4x+3}=x-2\)

=>\(\begin{cases}x-2\ge0\\ x^2-4x+3=\left(x-2\right)^2\end{cases}\Rightarrow\begin{cases}x\ge2\\ x^2-4x+3=x^2-4x+4\end{cases}\)

=>x∈∅

f: \(\sqrt{x^2-6x+9}=2x-1\)

=>\(\sqrt{\left(x-3\right)^2}=2x-1\)

=>|x-3|=2x-1

=>\(\begin{cases}2x-1\ge0\\ \left(2x-1\right)^2=\left(x-3\right)^2\end{cases}\Rightarrow\begin{cases}x\ge\frac12\\ \left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\end{cases}\)

=>\(\begin{cases}x\ge\frac12\\ \left(x+2\right)\left(3x-4\right)=0\end{cases}\Rightarrow x=\frac43\)