K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
D
1
HN
3 tháng 11 2016
ta có \(\frac{1}{\sqrt{x}}\)= \(\frac{2}{2\sqrt{x}}\)< \(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))
Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)= \(2\sqrt{100}-1\)< \(2\sqrt{101}-1=B\)
\(\Rightarrow\)A < B
NT
1
TQ
0
TL
Tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{101\sqrt{100}+100\sqrt{101}}\)
0
PT
1
DQ
7