\(A=99\text{º}\div\frac{1}{\pi\times1000000}\times7^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

Cái A có cần sài số đo radian không, mà cái này cũng không chắc nữa 

Ta có \(A=99^0.\pi.1000000.7^2=99^0.180^0.1000000.7^2>100000>8!=7!\times\frac{8!}{7!}=B\)

11 tháng 9 2019

Gợi ý: \(\pi=360\text{º}\)

a) \(\frac{3}{5}.x-\frac{1}{5}=\frac{4}{5}\)

\(\Leftrightarrow\frac{3}{5}.x=\frac{4}{5}+\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{5}.x=1\)

\(\Leftrightarrow x=1:\frac{3}{5}\)

\(\Leftrightarrow x=\frac{5}{3}\)

Vậy : \(x=\frac{5}{3}\)

b) \(\frac{4}{7}+\frac{5}{7}:x=1\)

\(\Leftrightarrow\frac{5}{7}:x=1-\frac{4}{7}\)

\(\Leftrightarrow\frac{5}{7}:x=\frac{3}{7}\)

\(\Leftrightarrow x=\frac{5}{7}:\frac{3}{7}\)

\(\Leftrightarrow x=\frac{5}{3}\)

Vậy : \(x=\frac{5}{3}\)

c) \(-\frac{12}{7}.\left(\frac{3}{4}-x\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{-12.1}{7.4}.\left(\frac{3}{4}-x\right)=-1\)

\(\Leftrightarrow-\frac{3}{7}.\left(\frac{3}{4}-x\right)=-1\)

\(\Leftrightarrow\frac{3}{4}-x=-1:\left(-\frac{3}{7}\right)\)

\(\Leftrightarrow\frac{3}{4}-x=\frac{7}{3}\)

\(\Leftrightarrow x=\frac{3}{4}-\frac{7}{3}=-\frac{19}{12}\)

Vậy : \(x=-\frac{19}{12}\)

d) \(x:\frac{17}{8}=-\frac{2}{5}.-\frac{9}{17}+3\)

\(\Leftrightarrow x:\frac{17}{8}=\frac{273}{85}\)

\(\Leftrightarrow x=\frac{273}{85}.\frac{17}{8}\)

\(\Leftrightarrow x=\frac{273}{40}\)

Vậy : \(x=\frac{273}{40}\)

\(\)

13 tháng 8 2019

Chương I  : Số hữu tỉ. Số thựcChương I  : Số hữu tỉ. Số thựcChương I  : Số hữu tỉ. Số thựcChương I  : Số hữu tỉ. Số thực

21 tháng 9 2020

a) Ta có : \(31^5< 32^5=\left(2^5\right)^5=2^{25}< 2^{28}=\left(2^4\right)^7=16^7< 17^7\)

\(\Rightarrow31^5< 17^7\)

b) Ta có : \(8^{12}=\left(2^3\right)^{12}=2^{36}>2^{32}=\left(2^4\right)^8=16^8>12^8\)

\(\Rightarrow8^{12}>12^8\)

c)  \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{99}\)

\(A=\frac{1-\frac{1}{99}}{2}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

a) \(31^5< 34^5=2^5.17^5=32.17^5\)

\(17^7=17^2.17^5=289.17^5\)

\(\Rightarrow31^5< 17^7\)

b) \(12^8< 16^8=\left(2^4\right)^8=2^{32}\)

\(8^{12}=\left(2^3\right)^{12}=2^{36}\)

\(\Rightarrow8^{12}>12^8\)

c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{1}{3^{99}}\)

\(\Rightarrow2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\)

4 tháng 8 2019

a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

4 tháng 8 2019

\(a,25^3:5^2\)

=\(\left(5^2\right)^3:5^2\)

=\(5^6:5^2\)

=\(5^4\)

\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)

\(=\left(\frac{3}{7}\right)^9\)

\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

=\(3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{4}\cdot\frac{1}{2}\)

\(=2+\frac{1}{8}\)

\(=\frac{17}{8}\)

\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)

\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)

\(=-\frac{14}{5}\cdot\frac{11}{16}\)

\(=-\frac{77}{40}\)

\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)

\(=\frac{2}{3}-\frac{1}{5}\)

\(=\frac{7}{15}\)

26 tháng 4 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)

\(\Rightarrow B>A\)

1 tháng 7 2021

\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)

\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)

\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

=> A > B

Vậy A > B