\(\frac{10^{2012}+1}{10^{2013}+1}\)

 

Biết:B=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

\(\Rightarrow10A=10.\left(\frac{10^{2012}+1}{10^{2013}+1}\right)=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(\Rightarrow10B=10.\left(\frac{10^{2013}+1}{10^{2014}+1}\right)=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Ta có: 1 = 1; 9 = 9

Mà \(10^{2013}+1<10^{2014}+1\)

=> \(\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)

=> \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\text{ hay }10A>10B\)

=> \(A>B\).

20 tháng 4 2019

\(A=\frac{10^{2012}+1}{10^{2013}+1}\)

\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(B=\frac{10^{2013}+1}{10^{2014}+1}\)

\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)

Nên \(10A>10B\)

Hay \(A>B\)

Vậy : A > B

23 tháng 5 2018

TA có :

A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)

B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)

Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B

Vậy A < B

27 tháng 4 2018

vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)

\(\Rightarrow A>B\)

27 tháng 4 2018

\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)

\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B

5 tháng 7 2017

a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)

Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)

\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)

Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)

Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)

b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)

Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)

Vậy A > B 

Có gì  sai cho sorry

a,

\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)

b,

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

mk nghĩ B<A

20 tháng 3 2016

é* can cai kiu tra loi do

20 tháng 4 2017

quy dong ca A va B ta dc :

\(A=\frac{-109}{10^{2014}}\)

\(B=\frac{-199}{10^{2014}}\)

\(\Rightarrow A>B\)

30 tháng 3 2018

dễ thôi

ta có :A=-9/10^2013+-19/10^2014=-9/10^2013+-9/10^2014+-10/10^2014

          B=-9/10^2014+-19/10^2013=-9/10^2014+-9/10^2013+-10/10^2013

nhìn nhé :cả A và B đều có các số hạng :-9/10^2013 và-9/10^2014

mà -10/10^2014<-10/10^2013

=>A<B

15 tháng 8 2015

a)Ta áp dụng tính chất sau:

Nếu a<b=>a/b<(a+k)/(b+k)     (k thuộc N*)

Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9

=>B<1013+10/1014+10

=>B<10.(1012+1)/10.(1013+1)

=>B<1012+1/1013+1=A

=>B<A

b)Ta áp dụng tính chất sau:

Nếu a>b=>a/b>(a+k)/(b+k)     (k thuộc N*)

 Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99

=>B>102015+100/102014+100

=>B>100.(102013+1)/100.(102012+1)

=>B>102013+1/102012+1=A

=>B>A

3 tháng 4 2016

Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:

Ta có:

A.10 = \(\frac{10^{12}+10}{10^{12}+1}\)                                                     B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)

=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\)                                              =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)

=>A.10 = 1 + \(\frac{9}{10^{12}+1}\)                                             =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)

=>A.10 > B.10

=>A > B

Vậy A > B

1 tháng 7 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
\(=>B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}\)

                                          \(< \frac{10^{2012}+10}{10^{2013}+10}\)

                                          \(< \frac{10.\left(10^{2011}+1\right)}{10.\left(10^{2012}+1\right)}\)

                                          \(< \frac{10^{2011}+1}{10^{2012}+1}=A\)

=> B < A

Ủng hộ mk nha ^_-

12 tháng 2 2018

Vì \(\frac{10^{2014}+1}{10^{2015}+1}< 1\Rightarrow B=\frac{10^{2014}+1}{10^{2015}+1}< \frac{10^{2014}+1+9}{10^{2015}+1+9}\)

\(\Rightarrow B< \frac{10^{2014}+10}{10^{2015}+10}\)

\(\Rightarrow B< \frac{10\left(10^{2013}+1\right)}{10\left(10^{2014}+1\right)}\)

\(\Rightarrow B< \frac{10^{2013}+1}{10^{2014}+1}\)

\(\Rightarrow B< A\)

Vậy A > B

12 tháng 2 2018

Các bn giúp mình vơi mình đang cần lắm