Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2016^2015 +1 / 2016^2014+1 < 2016^2015 + 1 + 2015 / 2016^2014 + 1 + 2015
= 2016^2015 + 2016 / 2016^2014 + 2016
= 2016(2016^2014 + 1 ) / 2016(2016^2013 +1)
= 2016^2014 + 1 / 2016^2013 + 1 = B
=> A < B
Ta có:
B=2012/(2013+2014)+2013/(2013+2014)
Xét từng số hạng của B:
2012/(2013+2014)<2012/2013
2013/2013+2014<2013/2014
=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A
=>B<A
Tham Khảo: Câu hỏi của Nguyễn Hữu Tài - Toán lớp 6 | Học trực tuyến
a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)
b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)
\(\frac{2014^{2013}+1}{2014^{2013}-13}\)lớn hơn 1 là \(\frac{14}{2014^{2013}-13}\)
\(\frac{2014^{2012}+8}{2014^{2012}-11}\)lớn hơn 1 là \(\frac{19}{2014^{2012}-11}\)
\(\frac{14}{2014^{2013}-13}\)\(< \)\(\frac{19}{2014^{2012}-11}\)
\(\Rightarrow A< B\)
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
Ta có :
A=\(\frac{9}{a^{2013}}+\frac{7}{a^{2014}}\)
=\(\left(\frac{8}{a^{2013}}+\frac{1}{a^{2013}}\right)+\left(\frac{8}{a^{2014}}-\frac{1}{a^{2014}}\right)\)
=\(\left(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\right)+\left(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}\right)\)
B=\(\frac{8}{a^{2014}}+\frac{8}{a^{2013}}\)
=\(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\)
Vì \(\frac{1}{a^{2013}}>\frac{1}{a^{2014}}\)nên\(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}>0\)
=> \(\left(\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\right)+\left(\frac{1}{a^{2013}}-\frac{1}{a^{2014}}\right)>\frac{8}{a^{2013}}+\frac{8}{a^{2014}}\)
Vậy \(A>B\)
Chúc em học tốt
#Thiên_Hy
\(A=\frac{9}{a^{2013}}+\frac{7}{a^{2014}}=\frac{8}{a^{2013}}+\frac{1}{a^{2013}}+\frac{7}{a^{2014}}\)
\(B=\frac{8}{a^{2014}}+\frac{8}{a^{2013}}=\frac{7}{a^{2014}}+\frac{1}{a^{2014}}+\frac{8}{a^{2013}}\)
Ta thấy :
\(\frac{8}{a^{2013}}=\frac{8}{a^{2013}}\)
\(\frac{7}{a^{2014}}=\frac{7}{a^{2014}}\)
\(\frac{1}{a^{2013}}>\frac{1}{a^{2014}}\left(a^{2013}< a^{2014}\right)\)
\(\Rightarrow A>B\)