Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{1}{10}+\frac{1}{40}+...+\frac{1}{340}\)
\(\Leftrightarrow A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{17.20}\)
\(\Leftrightarrow A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{17.20}\right)\)
\(\Leftrightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(\Leftrightarrow A=\frac{1}{6}-\frac{1}{60}=\frac{3}{20}\)
b, \(2004^{10}+2004^9=2004^9\left(2014+1\right)=2014^9+2005\)
\(2015^{10}=2015^9.2015\)
-Vậy: \(2004^{10}+2004^9< 2005^{10}\)
\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)
b , Áp dụng và so sánh :
3^200 và 2^300
3^200 = ( 3^2 )^100 = 9^100
2^300 = ( 2^3 )^100 = 8^100
Vì 9^100 > 8^100 => 3^200 > 2^300
Vậy 3^200 > 2^300
5^200 và 2^500
5^200 = ( 5^2 )^100 = 25^100
2^500 = ( 2^5 )^100 = 32^100
Vì 26^100 < 32^100 => 5^200 < 2^500
Vậy 5^200 < 2^500
1a)
Có A=\(33^{44}=3^{44}\cdot11^{44}=\left(3^4\right)^{11}\cdot11^{44}\)
B= \(44^{33}=4^{33}\cdot11^{33}=\left(4^3\right)^{11}\cdot11^{33}\)
Vì \(3^4>4^3\)=> \(\left(3^4\right)^{11}>\left(4^3\right)^{11}\)
mà \(11^{44}>11^{33}\)
=> \(\left(3^4\right)^{11}+11^{44}>\left(4^3\right)^{11}+11^{33}\)
=>\(33^{44}>44^{33}\)
=> A > B
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
1.a. 2S=\(2+2^2+2^3+...+2^{10}\)
2S -S=(\(2+2^2+2^3+...+2^{10}\)) - (1+2+22+...+29)
S= 210 -1
5 ~ (gần bằng) 2^2.322
5^891 ~ (2^2.322)^891 ~ 2^2068
vì 2^2004 < 2^2068 => 2^2004 < 5^891