\(\left(x+\dfrac{1}{3}\right)^2\)- 7

B=-8-(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=6\left(x+\dfrac{1}{3}\right)^2-7>=-7>-8\forall x\)

\(B=-8-\left(3.75-x\right)^2\le-8\)

Do đó: A>B

b: \(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}=\dfrac{15}{16}\)

\(B=\left(\dfrac{1}{2}\right)^4=\dfrac{1}{16}\)

Do đó: A>B

5 tháng 10 2017

ahihi

6 tháng 10 2017

Cái này dễ lắm. Mình giải luôn nhé!

a) \(\left[{}\begin{matrix}\dfrac{1}{7}x-\dfrac{2}{7}=0\Leftrightarrow x=\dfrac{2}{7}:\dfrac{1}{7}\Leftrightarrow x=2\\-\dfrac{1}{5}x+\dfrac{3}{5}=0\Leftrightarrow x=-\dfrac{3}{5}:\left(-\dfrac{1}{5}\right)\Leftrightarrow x=3\\\dfrac{1}{3}x+\dfrac{4}{3}=0\Leftrightarrow x=-\dfrac{4}{3}:\dfrac{1}{3}\Leftrightarrow x=-4\end{matrix}\right.\)

Vậy x=2 hoặc x=3 hoặc x=-4

b)\(x\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right)+1=0\)

\(x.0+1=0\)

\(1=0\) ( vô lí)

Vậy không có giá trị của x nào thỏa mãn

Bài1:

Giải 1 câu các câu sau tương tự

1.A=|x|+1

Với mọi x thì |x|>=0

=>|x|+1 >=1

Hay A>=1

Để A=1 thì |x|=0

=>x=0

Vậy...

Bài2:

1.A=−|x−2|+7

Với mọi x thì −|x−2|nhỏ hơn bằng 0

=>−|x−2|+7 nhỏ hơn bằng 7

Hay A nhỏ hơn bằng 7

Để A=7 thì |x−2|=0

=>x-2=0=>x=2

Các câu sau tương tự

3 tháng 9 2017

1) \(A=\left|x\right|+1\ge1\forall x\)

\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)

vậy GTNN của A là 1 khi \(x=0\)

2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)

\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)

3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)

\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)

vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)

10 tháng 9 2017

Đăng từng bài một thôi bạn!

1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)

\(=\left(-\dfrac{5}{13}\right).1^{2016}\)

\(=-\dfrac{5}{13}\)

10 tháng 9 2017

Cám ơn bn nhìu. giúp mk mí bài kia nữa đc ko?

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

5 tháng 7 2017

\(\text{a) }\dfrac{\left(-6\right)^6}{216}=\dfrac{6^6}{216}=\dfrac{6^6}{6^3}=6^3=216\)

\(\text{b) }\dfrac{64}{\left(-4\right)^5}=-\dfrac{64}{4^5}=-\dfrac{4^3}{4^5}=-\dfrac{1}{4^2}=-\dfrac{1}{16}\)

\(\text{c) }\dfrac{900}{\left(-30\right)^3}=-\dfrac{900}{30^3}=-\dfrac{30^2}{30^3}=-\dfrac{1}{30}\)

\(\text{d) }\dfrac{225}{15^3}=\dfrac{15^2}{15^3}=\dfrac{1}{15}\)

4 tháng 7 2017

Đề nghị bạn trình bày câu hỏi rõ ràng hơn nữa

a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)

=>x+1=0

hay x=-1

b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)

=>x=15

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\dfrac{99}{100}=1\)

\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)

\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)

\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)