\(\dfrac{1}{3^1}\) + \(\dfrac{1}{3^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B 

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

11 tháng 4 2017

bài 1:

a) \(4\dfrac{1}{2}x:\dfrac{5}{12}=0,5\) ; b)\(1,5+1\dfrac{1}{4}x=\dfrac{2}{3}\)

\(\dfrac{9}{2}x:\dfrac{5}{12}=\dfrac{1}{2}\) \(\dfrac{3}{2}+\dfrac{5}{4}x=\dfrac{2}{3}\)

\(\dfrac{9}{2}x\) \(=\dfrac{1}{2}.\dfrac{5}{12}\) \(\dfrac{5}{4}x=\dfrac{2}{3}-\dfrac{3}{2}\)

\(\dfrac{9}{2}x\) \(=\dfrac{5}{24}\) \(\dfrac{5}{4}x=\dfrac{-5}{6}\)

\(x\) \(=\dfrac{5}{24}:\dfrac{9}{2}\) \(x=\dfrac{-5}{6}:\dfrac{5}{4}\)

\(x\) \(=\dfrac{5}{108}\) \(x=\dfrac{-2}{3}\)

c) Cho mình hỏi x ở đâu vậy ???

d)\(\left(x-5\right):\dfrac{1}{3}=\dfrac{2}{5}\) e)\(\left(4,5-2x\right):\dfrac{3}{4}=1\dfrac{1}{3}\)

\(\left(x-5\right)\) \(=\dfrac{2}{5}.\dfrac{1}{3}\) \(\left(\dfrac{9}{2}-2x\right):\dfrac{3}{4}=\dfrac{4}{3}\)

\(x-5\) \(=\dfrac{2}{15}\) \(\dfrac{9}{2}-2x\) =\(\dfrac{4}{3}.\dfrac{3}{4}\)

\(x\) \(=\dfrac{2}{15}+5\) \(\dfrac{9}{2}-2x=1\)

\(x\) \(=\dfrac{77}{15}\) \(2x=\dfrac{9}{2}-1\)

f) \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{7}\) \(2x=\dfrac{7}{2}\)

\(\left(\dfrac{27}{10}x-\dfrac{3}{2}x\right):\dfrac{2}{7}=-3\) \(x=\dfrac{7}{2}:2\)

\(\left[x\left(\dfrac{27}{10}-\dfrac{3}{2}\right)\right]=-3.\dfrac{2}{7}\) \(x=\dfrac{7}{4}\)

\(x.\dfrac{6}{5}=\dfrac{-6}{7}\)

\(x=\dfrac{-6}{7}:\dfrac{6}{5}\)

\(x=\dfrac{-5}{7}\)

bài 2:

Theo bài ra ta có :\(\dfrac{a}{27}=\dfrac{-5}{9}=\dfrac{-45}{b}\)

\(\Rightarrow9a=27.\left(-5\right)\Rightarrow a=\dfrac{27.\left(-5\right)}{9}=-15\)

\(\Rightarrow\left(-5\right)b=\left(-45\right).9\Rightarrow b=\dfrac{\left(-45\right).9}{-5}=81\)

Vậy \(a=-15;b=81\)

a: 51/56=1-5/56

61/66=1-5/66

mà -5/56<-5/66

nên 51/56<61/66

b: 41/43<1<172/165

c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)

17 tháng 4 2017

a) \(\dfrac{1}{3}+\dfrac{3}{8}-\dfrac{7}{12}\)

\(=\dfrac{17}{24}-\dfrac{7}{12}\)

\(=\dfrac{1}{8}\)

b) \(\dfrac{-3}{14}+\dfrac{5}{8}-\dfrac{1}{2}\)

\(=\dfrac{23}{56}-\dfrac{1}{2}\)

\(=\dfrac{-5}{56}\)

c) \(\dfrac{1}{4}-\dfrac{2}{3}-\dfrac{11}{18}\)

\(=\dfrac{-5}{12}-\dfrac{11}{18}\)

\(=\dfrac{-37}{36}\)

d) \(\dfrac{1}{4}+\dfrac{5}{12}-\dfrac{1}{13}-\dfrac{7}{8}\)

\(=\dfrac{2}{3}-\dfrac{1}{13}-\dfrac{7}{8}\)

\(=\dfrac{23}{39}-\dfrac{7}{8}\)

\(=\dfrac{-89}{312}\)

31 tháng 3 2017

a;\(\dfrac{-6}{11}\) : \(\dfrac{12}{55}\) = \(\dfrac{-5}{2}\)

b;\(\dfrac{7}{12}\) + \(\dfrac{5}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{47}{72}\) - \(\dfrac{11}{36}\) = \(\dfrac{25}{72}\)

c;\(\dfrac{13}{10}\) : \(\dfrac{-5}{13}\) = \(\dfrac{-169}{50}\)

d; {\(\dfrac{5}{12}\) + \(\dfrac{5}{11}\) } : { \(\dfrac{5}{3}\) -\(\dfrac{7}{11}\) } = \(\dfrac{115}{132}\) : \(\dfrac{34}{33}\) = \(\dfrac{115}{136}\)

lưu ý mk ko chép đầu bài

31 tháng 3 2017

mình cần gấp lắm đến chiều mai là phải nộp rùi

giúp mình nha thanks cá bạn trước vuiko có tâm trạng mà cười nữalolanglimdim

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?