\(\dfrac{1}{1.2}\) . \(\dfrac{4}{2.3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2022

 

\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{50}{51}=\dfrac{1}{51}=\dfrac{3}{153}< \dfrac{3}{150}< \dfrac{13}{150}\)

\(\Rightarrow A< B\)

8 tháng 7 2022

Ta có 

\(A=\dfrac{1}{1\cdot2}\cdot\dfrac{4}{2\cdot3}\cdot\dfrac{9}{3\cdot4}\cdot\dfrac{16}{4\cdot5}..\cdot\dfrac{2500}{50\cdot51}\)

\(A=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}+...+\dfrac{50^2}{50\cdot51}\)

\(A=\dfrac{1^2\cdot2^2\cdot3^2\cdot...\cdot50^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot..\cdot50\cdot51}\)

\(A=\dfrac{1^2\cdot2^2\cdot3^2\cdot...\cdot50^2}{1\cdot2^2\cdot3^2\cdot4^2\cdot...\cdot50^2\cdot51}\)\(=\dfrac{1}{51}\)

Có \(A=\dfrac{1}{51}=\dfrac{13}{663}< B=\dfrac{13}{150}\)

19 tháng 3 2024

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}.\)\(\dfrac{24}{25}\)...\(\dfrac{9800}{9801}\)

A = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\)...\(\dfrac{98.100}{99.99}\)

A = \(\dfrac{1}{2}.\dfrac{100}{99}\)

A = \(\dfrac{50}{99}\) 

B = \(\dfrac{1.2+2.3+3.4+...+98.99}{98.99.100}\)

Đặt tử số là C Thì 

C = 1.2 + 2.3 + 3.4 +...+ 98.99

C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ...+ 98.99.3)

C = \(\dfrac{1}{3}\).[1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 98.99.(100-97)]

C = \(\dfrac{1}{3}\).[1.2.3 -1.2.3+2.3.4- 2.3.4 + 2.4.5 - .... - 97.98.99 + 98.99.100]

C = \(\dfrac{1}{3}\).98.99.100

B = \(\dfrac{\dfrac{1}{3}.98.99.100}{98.99.100}\) 

B = \(\dfrac{1}{3}\) = \(\dfrac{33}{99}\) < \(\dfrac{50}{99}\) = A

Vậy B < A

 

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

1 tháng 5 2018

a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018

A = 1 - 1/2018 = 2017/2018

b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)

B= 5/2 . ( 1/2 - 1/ 2018 )

B = 504/1009

c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33

C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33

C = 1/3 - 1/33

C= 10/33

1 tháng 5 2018

phan B mk quên nhân với 5/2

lấy 5/2 . 504/1009 = 1260/1009

a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)

b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)

22 tháng 3 2017

1,

B=\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.........+\(\dfrac{1}{2^{2017}}\)

2B=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\)

2B-B=(1+\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+.......+\(\dfrac{1}{2^{2016}}\))-(\(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+\(\dfrac{1}{2^4}\)+.......+\(\dfrac{1}{2^{2017}}\))

B=1-\(\dfrac{1}{2^{2017}}\)

Vậy B=1-\(\dfrac{1}{2^{2017}}\)

17 tháng 4 2017

A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)

A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))

A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))

A = 9 ( 1 - \(\dfrac{1}{100}\))

A = 9 . \(\dfrac{99}{100}\)

A = \(\dfrac{891}{100}\)

18 tháng 4 2017

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)

\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=9\cdot\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

9 tháng 3 2018

Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)

\(=\dfrac{a+1-a}{a\left(a+1\right)}\)

\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)

Ta được:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

13 tháng 6 2018

Dấu " / " là phân số nhé

a) 5/-4 . 16/25 + -5/4 . 9/25

= -5/4 . 16/25 + -5/4 . 9/25

= -5/4 . ( 16/25 + 9/25 )

= -5/4 . 1

= -5/4

b) 4 11/23 - 9/14 + 2 12/23 - 5/4

= 103/23 - 9/14 + 58/23 - 5/4

= 103/23 + 58/23 - 9/14 - 5/4

= 7 - 9/14 - 5/4

= 143/28

c) 2 13/27 - 7/15 + 3 14/27 - 8/15

= 67/27 - 7/15 + 95/27 - 8/15

= 67/27 + 95/27 - 7/15 - 8/15

= 6 - 7/15 - 8/15

= 5

19 tháng 3 2018

\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)

= \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\)

= \(\dfrac{1}{2}\) + \(\dfrac{1}{8}\) MSC: 8

= \(\dfrac{4}{8}\) + \(\dfrac{1}{8}\)

= \(\dfrac{5}{8}\)

22 tháng 3 2018

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

= \(\dfrac{1}{2}-\dfrac{1}{8}\)

=\(\dfrac{4}{8}-\dfrac{1}{8}\)

=\(\dfrac{3}{8}\)