Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
so sánh các phân số sau : a) 7/9 và 19/17
b) n/n+3 và n+1/n+2
c) A = 10^11-1/10^12-1 và B = 10^10+1/10
a) Ta có :
\(\frac{7}{9}< 1\); \(\frac{19}{17}>1\)
Vì \(\frac{7}{9}< 1< \frac{19}{17}\)nên \(\frac{7}{9}< \frac{19}{17}\)
b) Xét phân số trung gian là \(\frac{n}{n+2}\)
Vì \(\frac{n}{n+3}< \frac{n}{n+2}\)và \(\frac{n}{n+2}< \frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
c) Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(A< B\)
\(10A=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
\(10B=\dfrac{10^{10}+10}{10^{10}+1}=1+\dfrac{9}{10^{10}+1}\)
\(10^{11}+1>10^{10}+1\)
=>\(\dfrac{9}{10^{11}+1}< \dfrac{9}{10^{10}+1}\)
=>\(\dfrac{9}{10^{11}+1}+1< \dfrac{9}{10^{10}+1}+1\)
=>10A<10B
=>A<B
A = \(\dfrac{10^{10}+1}{10^{11}+1}\) < \(\dfrac{10^{10}+1+9}{10^{11}+1+9}\) = \(\dfrac{10^{10}+10}{10^{11}+10}\) = \(\dfrac{10.\left(10^9+1\right)}{10.\left(10^{10}+1\right)}\) = B
Vậy A < B