\(\sqrt{17}\)+ \(\sqrt{26}\)+ 1 và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

a) Ta có \(\sqrt{17}>\sqrt{16}=4\)

\(\sqrt{26}>\sqrt{25}=5\)

Khi đó \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\)    (1)

Mà \(\sqrt{99}< \sqrt{100}=10\)                                            (2)

Từ (1) và (2) suy ra \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Vậy....

4 tháng 11 2017

Cảm mơn bn rất nhiều <3 <3 <3

4 tháng 11 2017

Đề bảo so sánh hả bạn?

11 tháng 8 2018

Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)

11 tháng 8 2018

good luckbanhqua

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

25 tháng 11 2017

Ta có : 

\(\frac{-1}{2}^{300}=\left[\left(-\frac{1}{2}\right)^3\right]^{100}=\left(-\frac{1}{8}\right)^{100}\)

\(\frac{-1}{3}^{200}=\left[\left(-\frac{1}{3}\right)^2\right]^{100}=\frac{1}{9}^{100}\)

vì \(\left(-\frac{1}{8}\right)^{100}=\frac{1}{8}^{100}\)mà 8100 < 9100 nên \(\frac{1}{8}^{100}>\frac{1}{9}^{100}\)hay \(\left(-\frac{1}{8}\right)^{100}>\left(\frac{1}{9}\right)^{100}\)

Vậy \(\left(-\frac{1}{2}\right)^{300}>\left(-\frac{1}{3}\right)^{200}\)

25 tháng 11 2017

\(\left(\frac{-1}{2}\right)^{300}=\left[\left(\frac{-1}{2}\right)^3\right]^{100}=\left(\frac{-1}{8}\right)^{100}\)

\(\left(\frac{-1}{3}\right)^{200}=\left[\left(\frac{-1}{3}\right)^2\right]^{100}=\left(\frac{1}{9}\right)^{100}\)

vì \(\left(\frac{-1}{8}\right)^{100}< \left(\frac{1}{9}\right)^{100}\)nên \(\left(\frac{-1}{2}\right)^{300}< \left(\frac{-1}{3}\right)^{200}\)

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0
2 tháng 1 2018

a)\(VT=\left(-\dfrac{1}{8}\right)^{100}=\dfrac{1}{8^{100}}=\dfrac{1}{\left(2^3\right)^{100}}=\dfrac{1}{2^{300}}\)

\(VP=\left(-\dfrac{1}{4}\right)^{200}=\dfrac{1}{\left(2^2\right)^{200}}=\dfrac{1}{2^{400}}\)

\(\Rightarrow VT>VP\)

b) \(VT=4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}=VP\)

c) \(VT=5^{2000}=\left(5^2\right)^{1000}=25^{1000}>10^{1000}=VP\)

d) \(VT=31^5< 32^5=\left(2^5\right)^5=2^{25}\)

\(VP=17^7>16^7=\left(2^4\right)^7=2^{28}\)

\(VP>VT\)

6 tháng 7 2017

Ta có : 333^444=(3.111)^444=3^444.111^444

444^333=(4.111)^333=4^333.111^333

Ta lại có : 3^444=(3^4)^111=81^111

4^333=(4^3)^111=64^111

vì 3^444>4^333

mặt khác 111^333<111^444

suy ra 4^333.111^333<3^444.111^444    

                                  vậy 333^444>444^333

17 tháng 12 2017

- #Vũ Elsa - Sai thì nhận đi bạn:) với lại mình thấy bạn Ribi ko ns sai mak:)

- #Dương Hạ Chi - Nối típ nè ^^ : Im lặng là đỉnh cao của sự khinh bỉ, và ít ai nhận ra điều đó ^^

17 tháng 12 2017

@làm sai thì bạn Phúc nhắc cho là đúng, CTV chúng mình có thể xóa những bài sai để tránh người hỏi làm sai theo :), trong trường hợp này Phúc cx chỉ ra lỗi sai ko rõ ràng, lần sau, phúc nên chỉ ra lỗi sai hoặc xóa luôn :), giải sai thì sửa, ko phải cãi nhau đâu bạn :)

23 tháng 7 2019

Bài 1 nghĩa là 5x = 2y và \(x^3\cdot y^2=200\)à???

23 tháng 7 2019

1) Ta có: 5x = 2y = x/2 = y/5 

Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\) (*)

Khi đó, ta có: x3y2 = 200

=> (2k)3.(5k)2 = 200

=> 8k3 . 25k2 = 200

=> 200k5 = 200

=> k5 = 1

=> k = 1

Thay k = 1 vào (*), ta được:

+) x = 2.1 = 2

+) y = 5.1 = 5

Vậy ...