Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
a, Ta có
\(7^2=49\)
\(\sqrt{42}^2=42\)
\(\Rightarrow\sqrt{42}< 7\)
b, Ta có
\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)
\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)
\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)
\(c,\)Ta có
\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)
\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)
\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)
Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn
a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)
b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)
c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)
d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)
Mk gợi ý vậy thôi bn tự trình bày nhé
STD well
a) có \(\sqrt{2}\) <\(\sqrt{3}\)
5= \(\sqrt{25}\) >\(\sqrt{11}\)
=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
b)có \(\sqrt{21}>\sqrt{20}\)
-\(\sqrt{5}\) >-\(\sqrt{6}\)
=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
ta có A=1+2+3+4+5+6=\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)
Ta thấy \(\sqrt{1}\)<\(\sqrt{2}\)
\(\sqrt{4}\)<\(\sqrt{6}\)
.............
\(\sqrt{36}\)<\(\sqrt{42}\)
có gì sai thì sửa nhé
=>\(\sqrt{1}\)+\(\sqrt{4}\)+\(\sqrt{9}\)+\(\sqrt{16}\)+\(\sqrt{25}\)+\(\sqrt{36}\)<\(\sqrt{2}\)+\(\sqrt{6}\)+\(\sqrt{12}\)+\(\sqrt{20}\)+\(\sqrt{30}\)+\(\sqrt{42}\)
=>B<A hay A>B
a, Ta có: \(\sqrt{36}=6\)
Vì \(36>35\Rightarrow\sqrt{36}>\sqrt{35}\) hay \(6>\sqrt{35}\)
a,>
b,vô lí
c,>
d,>
e<
a) 26 lớn hơn 5
b) -4 nhỏ hơn (-2)^2
c) a+b lớn hơn a+√b
d)√9.16 lớn hơn √9.√16
e)√12+√20+√30√42 nhỏ hơn 20