Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 20092010- 2 < 20092011- 2 ⇒ B < 1
\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)
\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A
Ta có :
\(17A=\frac{17^{2009}+17}{17^{2009}+1}=\frac{17^{1009}+1+16}{17^{2009}+1}=\frac{17^{2009}+1}{17^{2009}+1}+\frac{16}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)
\(17B=\frac{17^{2010}+17}{17^{2010}+1}=\frac{17^{2010}+1+16}{17^{2010}+1}=\frac{17^{2010}+1}{17^{2010}+1}+\frac{16}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)
Vì \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\) nên \(17A>17B\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có : \(B=\frac{9^{2009}+1}{9^{2010}+1}< 1\)
\(\Rightarrow B< \frac{9^{2009}+1+8}{9^{2010}+1+8}\)
\(\Rightarrow B< \frac{9.\left(9^{2008}+1\right)}{9.\left(9^{2009}+1\right)}=\frac{9^{2008}+1}{9^{2009}+1}\)
Vậy B < A
B = 92009 + 1/92010 + 1 < 1
=> B < 92009 + 1 + 8 / 92010 + 1 + 8 = 92009 + 9 / 92010 + 9 = 9 (92008 + 1 ) / 9 ( 92007 + 1) = A
=>B < A
#Hoq chắc _ Baccanngon