Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{215-2}{2015^m}+\frac{2015+2}{2015^n}=\frac{2015}{2015^m}-\frac{2}{2015^m}+\frac{2015}{2015^n}+\frac{2}{2015^n}=A-2\left(\frac{1}{2015^m}-\frac{1}{2015^n}\right)\)
+ Nếu \(m>n\Rightarrow2015^m>2015^n\Rightarrow\frac{2}{2015^m}<\frac{2}{2015^n}\Rightarrow\frac{2}{2015^m}-\frac{2}{2015^n}<0\Rightarrow A-\left(\frac{2}{2015^m}-\frac{2}{2015^n}\right)>A\)
=> A<B
+ Nếu
m<n làm tương tự => A>B
Ta có: \(M=\frac{2017^{2015}+1}{2017^{2015}-1}=\frac{2017^{2015}-1+2}{2017^{2015}-1}=1+\frac{2}{2017^{2015}-1}\)
\(N=\frac{2017^{2015}-5}{2017^{2015}-3}=\frac{2017^{2015}-3-2}{2017^{2015}-3}=1-\frac{2}{2017^{2015}-3}\)
Vì \(\frac{2}{2017^{2015}-1}>-\frac{2}{2017^{2015}-3}\)nên M>N
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Xét N có:
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta các số hạng của M và N có:
\(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\) (1)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\) (2)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\) (3)
Từ (1);(2);(3) => M > N
Ta có:
\(\frac{2013}{2014}>\frac{2013}{2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\)
\(\Rightarrow M>N\)
Ta có: \(N=\frac{2013+2014}{2014+2015}<1\);
\(M=\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013}{2015}+\frac{2014}{2015}=\frac{4027}{2015}>1\)
\(\Rightarrow A>B\)
\(N=\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=M=\frac{8}{10^{2015}}+\frac{6}{10^{2016}}\)
Hk tốt
k nhé
Ta có :N= \(\frac{6}{10^{2015}}+\frac{8}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2016}}\)
M=\(\frac{8}{10^{2015}}+\frac{6}{10^{2016}}=\frac{6}{10^{2015}}+\frac{6}{10^{2016}}+\frac{2}{10^{2015}}\)
Ta Xét: \(\frac{2}{10^{2016}},\frac{2}{10^{2015}}\)
Vì 102016>102015
Nên: \(\frac{2}{10^{2016}}< \frac{2}{10^{2015}}\)
Do đó : N<M
Ta có : A= \(\dfrac{1}{1^m}\) +\(\dfrac{1}{1^n}\)
Và B=\(\dfrac{2015-2}{2015^m}+\dfrac{2015+2}{2015^n}\)
\(\Rightarrow\)\(\dfrac{1}{m}-\dfrac{2}{2015^m}+\dfrac{1}{n}+\dfrac{2}{2015^n}\)
\(\Rightarrow\dfrac{1}{n}+\dfrac{1}{m}+\dfrac{2\left(n-m\right)}{2015^{mn}}\)
TH1 2(n-m) >0 \(\Rightarrow\) 2015mn >0 \(\Rightarrow\) A>B
TH2 2(n-m)<0\(\Rightarrow\) 2015mn<0\(\Rightarrow\) A<B
TH3 2(n-m)=0\(\Rightarrow\) 2015mn=0 \(\Rightarrow\) A=B
Xong rồi nấm ơi, bảo uyên nữa nhé