Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-1\right)\)
\(=\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.1=\dfrac{5}{9}\)
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-\dfrac{26}{26}\right)\)
=\(\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.\left(\dfrac{7}{7}\right)\)
=\(\dfrac{5}{9}.1\)
\(=\dfrac{5}{9}\)
a: \(=\dfrac{4\cdot2+4\cdot9}{55}+\dfrac{5}{6}=\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{49}{30}\)
b: \(=\dfrac{3}{2}\cdot\dfrac{3}{5}-\left(\dfrac{3}{7}+\dfrac{3}{20}\right)\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{81}{140}\cdot\dfrac{10}{3}\)
\(=\dfrac{9}{10}-\dfrac{27}{14}=\dfrac{-36}{35}\)
c: \(=15+\dfrac{3}{13}-3-\dfrac{4}{7}-8-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
d: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=5\)
a) (1/7.x-2/7).(-1/5.x-2/5)=0
=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0
*1/7.x-2/7=0
1/7.x=0+2/7
1/7.x=2/7
x=2/7:1/7
x=2
b)1/6.x+1/10.x-4/5.x+1=0
(1/6+1/10-4/5).x+1=0
(1/6+1/10-4/5).x=0-1
(1/6+1/10-4/5).x=-1
(-8/15).x=-1
x=-1:(-8/15) =15/8
a, \(\left(2\dfrac{3}{5}-3\dfrac{5}{9}\right):\left(3\dfrac{10}{21}-1\dfrac{3}{7}\right)\)
\(=\dfrac{-43}{45}:\dfrac{43}{21}=\dfrac{-43}{45}.\dfrac{21}{43}=\dfrac{-7}{15}\)
b, \(5\dfrac{1}{2}-14\dfrac{3}{7}:\dfrac{9}{13}-3\dfrac{4}{7}:\dfrac{9}{13}\)
\(=5\dfrac{1}{2}-14\dfrac{3}{7}.\dfrac{13}{9}-3\dfrac{4}{7}.\dfrac{13}{9}\)
\(=5\dfrac{1}{2}-\dfrac{13}{9}.\left(14\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=5\dfrac{1}{2}-\dfrac{13}{9}.15=5\dfrac{1}{2}-\dfrac{65}{3}\)
\(=\dfrac{-97}{6}\)
Chúc bạn học tốt!!!
tìm x a)
\(\dfrac{7}{2}\)-\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\) + \(\dfrac{7}{2}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{12}+\dfrac{7}{12}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-12}{12}=1\)
\(x+\dfrac{7}{10}\)= 1 . \(\dfrac{6}{5}\)
*Rồi tự làm phần tt đi
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)
= \(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)
tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)
Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)< \(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)
=> A > B
Đặt :
\(C=1+7+....+7^9\) \(\Leftrightarrow A=7^{10}:C\)
\(\Leftrightarrow7C=7+7^2+.......+7^{10}\)
\(\Leftrightarrow7C-C=\left(7+7^2+......+7^{10}\right)-\left(1+7+........+7^9\right)\)
\(\Leftrightarrow6C=7^{10}-1\)
\(\Leftrightarrow C=\dfrac{7^{10}-1}{6}\)
\(\Leftrightarrow A=7^{10}:\dfrac{7^{10}-1}{6}=7^{10}.\dfrac{6}{7^{10}-1}=\dfrac{1}{6}+\dfrac{1}{\left(7^{10}-1\right)6}\)\(\left(1\right)\)
Tương tự ta có : \(B=5^{10}:\dfrac{5^{10}-1}{4}=5^{10}.\dfrac{4}{5^{10}-1}=\dfrac{1}{4}+\dfrac{1}{\left(5^{10}-1\right)4}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)