\(\dfrac{1.3.5+2.6.10+4.12.20}{1.5.7+2.10.12+4.20.28}\)với
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{15\left(1+2\cdot4+64\right)}{35+240+2240}\)

\(=\dfrac{15\cdot73}{2515}=\dfrac{15\cdot73}{5\cdot503}=\dfrac{3\cdot73}{503}=\dfrac{219}{503}>\dfrac{3}{8}\)

9 tháng 8 2018

\(\frac{1.3.5+2.6.10+4.12.20}{1.5.7+2.10.14+4.20.28}\)

\(=\frac{3.5+2.3.2.5.2+4.3.4.5.4}{5.7+2.5.2.2.7+4.4.5.7.4}\)

\(=\frac{3.5.\left(1+2.2.2+4.4.4\right)}{5.7.\left(1+2.2.2+4.4.4\right)}\)

\(=\frac{3}{7}>\frac{3}{8}\)

20 tháng 3 2018

\(A=\frac{1.5.6+1.5.6.2^3+1.5.6.3^3+1.5.6.4^3+1.5.6.5^3}{1.3.5+1.3.5.2^3+1.3.5.3^3+1.3.5.4^3+1.3.5.5^3}\)

\(=\frac{1.5.6.\left(1+2^3+3^3+4^3+5^3\right)}{1.3.5.\left(1+2^3+3^3+4^3+5^3\right)}\)

\(=\frac{1.5.6}{1.3.5}=\frac{1.5.3.2}{1.3.5}=2\)

20 tháng 4 2019

\(A=\frac{\text{1.5.6 + 2.10.12 + 3.15.18 + 4.20.24 + 5.25.30}}{\text{1.3.5 + 2.6.10 + 3.9.15 + 4.12.20 + 5.15.25 }}\)

\(=\frac{1.5.6+2.\left(1.5.6\right)+3.\left(1.5.6\right)+4.\left(1.5.6\right)+5.\left(1.5.6\right)}{1.3.5+2.\left(1.3.5\right)+3.\left(1.3.5\right)+4.\left(1.3.5\right)+5.\left(1.3.5\right)}\)

\(=\frac{30.\left(1+2+3+4+5\right)}{15.\left(1+2+3+4+5\right)}\)

\(=\frac{30}{15}=2\)

Vậy A=2.

20 tháng 4 2019

Bấm máy tính

4 tháng 5 2017

\(=\frac{1.5.6+\left(1.5.6\right).2+\left(1.5.6\right).3+\left(1.5.6\right).4+\left(1.5.6\right).5}{1.3.5+\left(1.3.5\right).2+\left(1.3.5\right).3+\left(1.3.5\right).4+\left(1.3.5\right).5}\)

\(=\frac{\left(1.5.6\right).\left(1+2+3+4+5\right)}{\left(1.3.5\right).\left(1+2+3+4+5\right)}=\frac{1.5.6}{1.3.5}=\frac{1.1.2}{1.1.1}=2\)

4 tháng 5 2017

A= \(\frac{1.5.3.2+2.10.2.6+2.15.9.2+4.20.12.2+5.25.15.2}{1.3.5+2.6.10+3.9.15+4.12.20+5.15.25}\)

A= \(\frac{2+2+2\cdot2+2+2}{0+0+3+0+0}\)

A= \(\frac{12}{3}\)

A= 4

Đầu tiên bạn tách ra, rút gọn rồi cộng lại,tính nha!

6 tháng 6 2018

A=\(\dfrac{1.5.6+2.\left(1.5.6\right)+3.\left(1.5.6\right)+4.\left(1.5.6\right)+5.\left(1.5.6\right)}{1.3.5+2.\left(1.3.5\right)+3.\left(1.3.5\right)+4.\left(1.3.5\right)+5.\left(1.3.5\right)}\)

A=\(\dfrac{\left(1+2+3+4+5\right).\left(1.5.6\right)}{\left(1+2+3+4+5\right).\left(1.3.5\right)}\) = \(\dfrac{1.5.6}{1.3.5}\) = 2

9 tháng 8 2017

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

10 tháng 8 2017

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q

23 tháng 8 2017

a) \(\frac{1}{8}>0>\frac{-3}{8}=>\frac{1}{8}>\frac{-3}{8}\)

b) \(\frac{-3}{7}< 0< 2\frac{1}{2}=>\frac{-3}{7}< 2\frac{1}{2}\)

c) \(-3.9< 0< 0.1=>-3.9< 0.1\)

d) \(-2.3< 0< 3.2=>-2.3< 3.2\)

17 tháng 9 2017

a, Ta có:

A= \(\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)

B= \(\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)

\(\dfrac{4}{8^4}< \dfrac{4}{8^3}\) nên A < B.

b, Ta có:

\(\dfrac{20}{39}>\dfrac{14}{39}\)

\(\dfrac{22}{27}>\dfrac{22}{29}\)

\(\dfrac{18}{43}< \dfrac{18}{41}\)

\(\Rightarrow\)\(\dfrac{20}{39}+\dfrac{22}{27}+\dfrac{18}{43}>\dfrac{14}{39}+\dfrac{22}{29}+\dfrac{18}{41}\)

Hay A > B