\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{98^2}+\dfrac{1}{99^2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A>\dfrac{1}{2}-\dfrac{1}{100}\)

\(A>\dfrac{49}{100}\)

Ta lại có:

\(\dfrac{49}{100}=\dfrac{96775}{197500}\)

\(\dfrac{304}{1975}=\dfrac{30400}{197500}\)

\(\Rightarrow\dfrac{49}{100}>\dfrac{304}{1975}\)

\(A>\dfrac{49}{100}\)

\(\Rightarrow A>B\)

29 tháng 5 2017

a) Ta có

S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)

2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)

S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)

b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)

A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(2-\dfrac{1}{99}\)

A = \(\dfrac{197}{99}\)

c) Ta có

B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)

B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

B = \(1-\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

d) Ta có

C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)

C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)

C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))

Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)

D = \(\dfrac{1}{2}-\dfrac{1}{99}\)

D = \(\dfrac{97}{198}\)

=> C = 51 + 100.\(\dfrac{97}{198}\)

C = 51 + \(\dfrac{4850}{99}\)

C = \(\dfrac{9899}{99}\)

Đây là bài làm của mình sai thì nx nha

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)

Chọn A

2 tháng 5 2017

\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{98}{99}\)

\(=\dfrac{1.2.3....98}{2.3.4....99}=\dfrac{1}{99}\)

- Đáp án A.

4 tháng 4 2017

Đặt : \(B=\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)

\(B=\left(\dfrac{99}{1}+1\right)+\left(\dfrac{98}{2}+1\right)+...+\left(\dfrac{1}{99}+1\right)-99\)

\(B=\dfrac{100}{1}+\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}-99\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\left(100-99\right)\)

\(B=\dfrac{100}{2}+\dfrac{100}{3}+...+\dfrac{100}{99}+\dfrac{100}{100}\)

\(B=100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

Ta có : \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

7 tháng 5 2017

Ta có:

\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.\dfrac{6}{5}.\dfrac{7}{6}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5.6.7...99.100}{2.3.4.5.6...98.99}\)

\(=\dfrac{\left(3.4.5.6.7...99\right).100}{2.\left(3.4.5.6...98.99\right)}\)

\(=\dfrac{100}{2}=50\)

Vậy \(T=50\)

31 tháng 5 2017

\(T=\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).....\left(\dfrac{1}{99}+1\right)\)

\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.\dfrac{6}{5}.....\dfrac{100}{99}=\dfrac{100}{2}=50\)

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}<...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

15 tháng 3 2017

1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)

Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.

Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)

Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)

1b.Ta thấy:

\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)

Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất

Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))

Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)

\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0

15 tháng 3 2017

2)

a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất

\(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)

\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945

\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)

b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất

\(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)

\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)

\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)\(\dfrac{-1}{1}\) hay -1

12 tháng 3 2017

Bài 2:

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};....;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

Vậy A < 2

Bài 3:

D = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{2014}{2015}\)

\(=\dfrac{1.2......2014}{2.3......2015}=\dfrac{1}{2015}\)

Bài 4:

A = \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}......\dfrac{899}{900}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}........\dfrac{29.31}{30.30}\)

\(=\dfrac{1.2.3......29}{2.3.4.......30}.\dfrac{3.4.5......31}{2.3.4.....30}\)

\(=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)