Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{10^{15}+1}{10^6+1}>1\);\(B=\dfrac{10^6+1}{10^{17}+1}< 1\)
⇒\(A>B\)
b, \(D=\dfrac{2^{2007}+3}{2^{2006}-1}=\dfrac{2^{2008}+6}{2^{2007}-2}\)
Ta có : \(\dfrac{2^{2008}-3}{2^{2007}-1}< \dfrac{2^{2008}-3}{2^{2007}-2}< \dfrac{2^{2008}+6}{2^{2007}-2}\)
⇒ \(C< D\)
c, \(M=\dfrac{3}{8^3}+\dfrac{7}{8^4}=\dfrac{3}{8^3}+\dfrac{3}{8^4}+\dfrac{4}{8^4}\)
\(N=\dfrac{7}{8^3}+\dfrac{3}{8^4}=\dfrac{3}{8^3}+\dfrac{4}{8^3}+\dfrac{3}{8^4}\)
Vì \(\dfrac{4}{8^4}< \dfrac{4}{8^3}\)
⇒ \(M< N\)
Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???
Các bạn trả lời giúp mk nha. Mk đang cần gấp. Chều nay mk kiểm tra rồi
Các câu đúng: b,e
Các câu sai: a, c, d; f.
a) \(\left(-5\right)^2.\left(-5\right)^3=\left(-5\right)^5\);
c) \(\left(0,2\right)^{10}:\left(0,2\right)^5=\left(0,2\right)^{10-5}=0,2^5\);
d) \(\left[\left(-\dfrac{1}{7}\right)^2\right]^4=\left(-\dfrac{1}{7}\right)^{2.4}=\left(-\dfrac{1}{7}\right)^8\)
f \(\dfrac{8^{10}}{4^8}=\dfrac{\left(2^3\right)^5}{\left(2^2\right)^8}=\dfrac{2^{15}}{2^{16}}=\dfrac{1}{2}\)
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
a: \(\Leftrightarrow\dfrac{5}{3}+\dfrac{4}{3}< x< 3+\dfrac{1}{5}+1+\dfrac{4}{5}\)
=>3<x<5
=>x=4
b: \(\Leftrightarrow\dfrac{1}{3}:2x=-5+\dfrac{1}{4}=-\dfrac{19}{4}\)
=>\(2x=\dfrac{1}{3}:\dfrac{-19}{4}=\dfrac{1}{3}\cdot\dfrac{-4}{19}=\dfrac{-4}{57}\)
=>x=-2/57
c: \(\Leftrightarrow x\cdot\dfrac{-3}{2}=\dfrac{10}{3}-\dfrac{6}{7}=\dfrac{70-18}{21}=\dfrac{52}{21}\)
=>\(x=\dfrac{-52}{21}:\dfrac{3}{2}=\dfrac{-52}{21}\cdot\dfrac{2}{3}=\dfrac{-104}{63}\)
d: \(\Leftrightarrow70+18< x< 120+70\)
=>88<x<190
hay \(x\in\left\{89;90;...;188;189\right\}\)
a: \(\left(\dfrac{5}{6}\right)^6\cdot\left(\dfrac{6}{5}\right)^6\cdot\left(\dfrac{6}{5}\right)^2=\left(\dfrac{5}{6}\cdot\dfrac{6}{5}\right)^6\cdot\dfrac{36}{25}=\dfrac{36}{25}\)
b: \(=-\left(\dfrac{13}{8}\right)^3\cdot\left(\dfrac{32}{13}\right)^3\cdot\dfrac{32}{13}\)
\(=-\left(\dfrac{13}{8}\cdot\dfrac{32}{13}\right)^3\cdot\dfrac{32}{13}=-4^3\cdot\dfrac{32}{13}=\dfrac{-2048}{13}\)
c: \(=\left(0.1\right)^7\cdot10^{13}=\left(0.1\cdot10\right)^7\cdot10^6=10^6\)
Bài 5: GTNN chứ nhỉ?
Với mọi gt của \(x;y\in R\) ta có:
\(x^2+3\left|y-2\right|+1\ge1\)
Hay \(A\ge1\) với mọi gt của \(x;y\in R\)
Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy..................
Bài 6: GTLN chứ?
Với mọi giá trị của \(x\in R\) ta có:
\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)
Hay \(B\le5\) với mọi giá trị của \(x\in R\)
Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)
Vậy...................
Bài 4 :
\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)
\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)
Bài 5 :
\(A=1^2+3^2+6^2+9^2+.............+39^2\)
\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)
\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)
\(=10+3^2.818\)
\(=10+9.818\)
\(=7372\)
a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)
b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
_Học tốt_
\(A=\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
Ma \(B=\dfrac{10^8+6}{10^8-7}=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
De thay \(10^8-7>10^7-8\Leftrightarrow\dfrac{13}{10^8-7}< \dfrac{13}{10^7-8}\)
\(\Leftrightarrow B=1+\dfrac{13}{10^8-7}< A=1+\dfrac{13}{10^7-8}\)
Hay A>B