\(7+\sqrt{5}\) với.      \(\sqrt{48}\)+  2<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\left(7+\sqrt{5}\right)^2=54+2\sqrt{245}\)

\(\left(\sqrt{48}+2\right)^2=54+2\sqrt{192}\)

3 tháng 3 2020

Tự giải tiếp ha bạn

8 tháng 4 2016

a, \(7+\sqrt{5}\) ta co \(\sqrt{5}>\sqrt{4}\)(1)

\(\sqrt{48}+2\) \(\sqrt{48}<\sqrt{49}\)(2)

\(7+\sqrt{4}=7+2=9\)(3)

\(\sqrt{49}+2=7+2=9\)(4)

tu (1);(2);(3);(3) = > lam not di

b,\(1-\sqrt{50}\) cung so sanh \(\sqrt{50}voi\sqrt{49}\) tu lam not nha

k dung minh nha

10 tháng 12 2016

b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)

Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)

Từ biểu thức (1) và biểu thức (2)

=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

 

20 tháng 10 2019

a, Ta có

\(7^2=49\)

\(\sqrt{42}^2=42\)

\(\Rightarrow\sqrt{42}< 7\)

b, Ta có

\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)

\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)

\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)

\(c,\)Ta có

\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)

\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)

\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)

Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn

20 tháng 10 2019

a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)

b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)

c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)

d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)

Mk gợi ý vậy thôi bn tự trình bày nhé
STD well

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

6 tháng 11 2017

tính bình thường thôi

29 tháng 10 2017

So sánh các số sau: 

a = 3549 b = 5272 c = 52+35272+492 d = 5235272492 

=> A < B

28 tháng 10 2016

Mít cứ bình phương lên là ok

(2\(\sqrt{7}\))2 =28 (1)

(3\(\sqrt{3}\))2 =27 (2)

vậy (1) > (2)

cứ thế mà làm là hết mít