Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
A= 80.(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A = (38 - 1)(38 + 1)(316 + 1)(332 + 1)
A = (316 - 1)(316 + 1)(332 + 1)
A = (332 - 1)(332 + 1)
A = 364 - 1 < 364 = B
=> A < B
A=2012x2014=2012x(2012+2)=2012^2+4024
B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025
=>A<B
chúc bạn học tốt~~~
Bài 1 :
\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)
Vậy \(A< B\)
\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(2A=3^{32}-1\)
\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)
Vậy \(A>B\)
Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
cứ như thế
\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm
a/ \(3^{21}=3^{20}.3=\left(3^2\right)^{10}.3=9^{10}.3\left(1\right)\)
\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow3^{21}>2^{31}\)
b/ \(32^9=\left(2^5\right)^9=2^{45}\left(1\right)\)
\(16^{13}=\left(2^4\right)^{13}=2^{52}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow32^9< 16^{13}\)
a)3^21=1046353203 va 2^31=2147483648
Vay :3^21 < 2^31
b)32^9=35184372088832 va 16^13=4503599627370496
Vay :32^9 <16^13