\(2^{600}\)và \(3^{400}\)      b, 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(a,2^{600}=\left(2^6\right)^{100}=64^{100}\)\

\(3^{400}=\left(3^4\right)^{100}=81^{100}\)

\(=>2^{600}< 3^{400}\)

Tương tự 2 câu sau

25 tháng 9 2021

bạn ơi, trả lời thêm câu c hộ mình có được ko

2 tháng 10 2018

a) ta có: (-32)9 = [(-2)5 ]9 = (-2)45 = - (2)45 

(-16)13 =  - [ 24 ]13 = - (2)52

=> ....

b) ta có: (-5)30 = 530 = (53)10 = 12510

(-3)50 = 350 = (35)10  = 24310

=> ....

2 tháng 10 2018

c) ta có: (-32)9 = (-2)45 = (-2)13 . 232 

(-18)13 =  [(-2).32 ]13 = (-2)13 . 339 

=> ....

d) ta có: \(\left(-\frac{1}{16}\right)=-\left(\frac{1}{2}\right)^4.\) 

\(\left(-\frac{1}{2}\right)=-\left(\frac{1}{2}\right)^1< -\left(\frac{1}{2}\right)^4\) 

27 tháng 8 2017

a) \(3^{21}\)và \(2^{31}\)

\(3^{21}\)=\(3.3^{20}\)=\(3.9^{10}\)

\(2^{31}=2.2^{30}=2.8^{10}\)

Vì \(3.9^{10}\)>\(2.8^{10}\)\(\Rightarrow3^{21}>2^{31}\)

b)\(2^{300}\)và \(3^{200}\)

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

c)\(32^9\)\(18^{13}\)

\(32^9=2^{5.9}=2^{45}\)

\(18^{13}>16^{13}=2^{4.13}=2^{52}\)

\(\Rightarrow2^{45}< 2^{52}< 18^{13}\)\(\Rightarrow2^{45}< 18^{13}\Rightarrow32^9< 18^{13}\)

a) ta có: 321 = 3.320 = 3.910

231 = 2.230 = 2.810

vì 2.810 < 3.910 => 231 < 321

b) ta có: 2300 = (23)100 = 8100

3200 = (32)100 = 9100

vì 8100 < 9100 => 2300 < 3200

c) ta có: 329 = (25)9 = 245

1813 > 1613 = (24)13 = 252

ta thấy 245 < 252 < 1813

Nên 329 < 1813

26 tháng 9 2019

                                              Bài giải

Ta có : \(9^{99}=\left(9^{11}\right)^9\)

\(\left(9^{11}\right)^9>99^9\text{ }\left[\left(81\cdot9^9\right)^9>99^9\right]\text{ }\Rightarrow\text{ }9^{99}>99^9\)

26 tháng 9 2019

                                              Bài giải

Ta có : \(9^{99}=\left(9^{11}\right)^9\)

\(\left(9^{11}\right)^9>99^9\text{ }\left[\left(81\cdot9^9\right)^9>99^9\right]\text{ }\Rightarrow\text{ }9^{99}>99^9\)

7 tháng 8 2018

b) \(9^5=3^{2\cdot5}=3^{10}\)

\(27^3=3^{3\cdot3}=3^9\)

=> tự kết luận

7 tháng 8 2018

c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)

=> tự kết luận

7 tháng 8 2018

b) Ta có: \(9^5=\left(3^2\right)^5=3^{10}\) 

             \(27^3=\left(3^3\right)^3=3^9\)

Vì 10 > 9 => 310 > 39

Vậy 95 > 273

7 tháng 8 2018

1. So sánh : 

b) 9^5 và 27^3 

9^5 = ( 3^2 )^5 = 3^10

27^3 = ( 3^3 )^3  = 3^9 

Vì 3^10 > 3^9 => 9^5 > 27^3 

Vậy 9^5 > 27^3 

c) \(\left(\frac{1}{8}\right)^6\)và \(\left(\frac{1}{32}\right)^4\)

\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{3.6}=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{5.4}=\left(\frac{1}{2}\right)^{20}\)

Vì ( 1/2)^18 < (1/2)^20 => (1/8)^6 < (1/32)^4 

Vậy (1/8)^6 < (1/32)^4

Bài làm 

Đặt a - b = x ; b - c = y ; c - a = z 

 => x + y + z = 0

 Ta có :

          \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2.\left(\frac{x+y+z}{xyz}\right)\)

=>     \(N=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)( Vì x + y + z = 0 )

Vậy ta có đpcm

26 tháng 12 2016

\(\frac{4}{-9}=-\frac{4}{9}\)               

  \(\frac{8}{-13}=-\frac{8}{13}\)

MC=117

Quy đồng:

\(-\frac{4}{9}=-\frac{52}{117}\)

\(-\frac{8}{13}=-\frac{72}{117}\)

=>Vì -52>-72, nên \(-\frac{52}{117}>-\frac{72}{117}\)hay \(\frac{4}{-9}>\frac{8}{-13}\)

19 tháng 7 2017

a) \(2^{91}\)và \(5^{35}\)

Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)

b) \(3^{4000}\)và \(9^{2000}\)

Ta có :

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

Vì \(81^{1000}=81^{1000}\)nên \(3^{4000}=9^{2000}\)

19 tháng 7 2017

\(2^{91}\)và  \(5^{35}\)

Ta có : 

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

Vì \(8192>3125\)nên \(2^{91}>5^{35}\)

\(3^{4000}\)và  \(9^{2000}\)

Ta có : 

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

Vì \(81=81\)nên \(3^{4000}=9^{2000}\)